We characterise the learning of a mixture of two clouds of data points with generic centroids via empirical risk minimisation in the high dimensional regime, under the assumptions of generic convex loss and convex regularisation. Each cloud of data points is obtained by sampling from a possibly uncountable superposition of Gaussian distributions, whose variance has a generic probability density $\varrho$. Our analysis covers therefore a large family of data distributions, including the case of power-law-tailed distributions with no covariance. We study the generalisation performance of the obtained estimator, we analyse the role of regularisation, and the dependence of the separability transition on the distribution scale parameters.
翻译:高维超统计特征分类
翻译后的摘要:
我们在高维情况下利用经验风险最小化来表征学习两个数据点云的混合物,假设使用通用的凸损失和凸正则化。每个数据点云都是通过从可能为无限多的高斯分布之叠加中采样获得的,其方差具有通用的概率密度$\varrho$。因此,我们的分析涵盖了包括没有协方差的幂律分布在内的大量数据分布系列。我们研究了所得估计器的推广性能,分析了正则化的作用,以及可分离转换与分布的规模参数之间的关系。