We study a pricing setting where each customer is offered a contextualized price based on customer and/or product features. Often only historical sales data are available, so we observe whether a customer purchased a product at the price prescribed rather than the customer's true valuation. Such observational data are influenced by historical pricing policies, which introduce difficulties in evaluating the effectiveness of future policies. The goal of this paper is to formulate loss functions that can be used for evaluating pricing policies directly from observational data, rather than going through an intermediate demand estimation stage, which may suffer from bias. To achieve this, we adapt ideas from machine learning with corrupted labels, where we consider each observed purchase decision as a known probabilistic transformation of the customer's valuation. From this transformation, we derive a class of unbiased loss functions. Within this class, we identify minimum variance estimators and estimators robust to poor demand estimation. Furthermore, we show that for contextual pricing, estimators popular in the off-policy evaluation literature fall within this class of loss functions. We offer managerial insights into scenarios under which these estimators are effective.


翻译:我们研究一个定价设置,向每个客户提供基于客户和(或)产品特点的背景价格。通常只有历史销售数据,因此我们观察客户是否以规定的价格而不是客户的真正估值购买产品。这种观察数据受历史定价政策的影响,这些政策在评估未来政策的有效性方面造成困难。本文的目的是制定损失功能,直接从观察数据中直接用来评价定价政策,而不是通过中间需求估计阶段,这可能受到偏见的影响。为了实现这一点,我们调整了机器学习腐败标签后的想法,我们认为每个观察到的购买决定都是已知的客户估值概率变换。我们从这一转变中得出了一个不偏颇的损失功能类别。在这个类别中,我们确定最小的差异估计者和估算者,对需求估计力不强。此外,我们显示,在背景定价方面,非政策评价文献中受欢迎的估计者属于这一损失类别的职能。我们从管理角度深入了解这些估计者是否有效的情景。

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
71+阅读 · 2022年6月28日
【干货书】真实机器学习,264页pdf,Real-World Machine Learning
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
161+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
144+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
99+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
22+阅读 · 2022年2月4日
Arxiv
10+阅读 · 2021年11月3日
A Survey of Deep Learning for Scientific Discovery
Arxiv
29+阅读 · 2020年3月26日
Meta-Learning to Cluster
Arxiv
17+阅读 · 2019年10月30日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
14+阅读 · 2019年4月13日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
26+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】MXNet深度情感分析实战
机器学习研究会
16+阅读 · 2017年10月4日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员