Few-shot learning (FSL) aims to learn new categories with a few visual samples per class. Few-shot class representations are often biased due to data scarcity. To mitigate this issue, we propose to generate visual samples based on semantic embeddings using a conditional variational autoencoder (CVAE) model. We train this CVAE model on base classes and use it to generate features for novel classes. More importantly, we guide this VAE to strictly generate representative samples by removing non-representative samples from the base training set when training the CVAE model. We show that this training scheme enhances the representativeness of the generated samples and therefore, improves the few-shot classification results. Experimental results show that our method improves three FSL baseline methods by substantial margins, achieving state-of-the-art few-shot classification performance on miniImageNet and tieredImageNet datasets for both 1-shot and 5-shot settings. Code is available at: https://github.com/cvlab-stonybrook/fsl-rsvae.
翻译:少见的学习(FSL)旨在学习新类别,每类有一些视觉样本。少见的班级演示往往由于数据稀缺而有偏差。为了缓解这一问题,我们提议使用有条件的变异自动编码器(CVAE)模型生成基于语义嵌入的视觉样本。我们用基础类来培训这种CVAE模型,并利用它为新类生成特征。更重要的是,我们指导VAE严格生成具有代表性的样本,在培训CVAE模型时将非代表性的样本从基础培训组中移除。我们显示,这一培训计划加强了所生成样本的代表性,从而改进了少见的分类结果。实验结果显示,我们的方法通过很大的边距改进了三种FSL基线方法,在微型图像网和级级化ImaageNet上实现了最先进的微光分解性化性能,并在1发和5发式环境中都实现了分级的图像网络数据集。代码见:https://github.com/cvlab-stonybrook/fslrevabe。