项目名称: 微纳尺度多孔介质中气体运移机理研究
项目编号: No.51504276
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 矿业工程
项目作者: 孙海
作者单位: 中国石油大学(华东)
项目金额: 22万元
中文摘要: 微纳米孔隙为页岩和致密砂岩气藏主要储集空间,气体在微纳米多孔介质中为粘性流、Knudsen扩散、表面扩散及吸附层等机制的耦合作用,现存常用的描述气体微纳尺度多孔介质的运移模型计算结果相差较大,亟需对微纳米多孔介质中的气体运移机理和耦合模型进行研究。本项目拟采用实验和数值模拟、微观模拟和介观模拟相结合的方法开展微纳尺度多孔介质内气体运移规律研究。DSMC微观模拟得到现存修正真实气体效应的单管耦合运移模型的适用条件并建立通用的气体耦合运移模型;形成考虑真实气体效应、微尺度效应(吸附层、Knudsen扩散)和吸附解吸的格子Boltzmann和孔隙网络模型介观模拟方法,得到格子Boltzmann模拟的最小孔隙尺寸;介观模拟方法对致密砂岩和页岩三维数字岩心进行模拟,得到现存的多孔介质耦合运移模型的适用条件,建立准确、通用的真实岩心内气体耦合运移模型,为页岩气藏和致密砂岩气藏的宏观数值模拟提供基础。
中文关键词: 气体运移;致密多孔介质;数字岩心;格子-波尔兹曼方法;微纳尺度
英文摘要: Micro-nano scale pores are main storage space in shale gas and tight gas reservoir. The gas transport mechanisms in micro-nano porous media are coupling effects of viscous flow, Knusden diffusion, surface diffusion and adsorption layer. The existing gas transport model calculation result can’t describe the real gas flow in micro-nano porous media and research should be taken on the gas transport mechanisms in micro-nano porous media and its coupling model. In this project, experiment method and numerical simulation method which includes micro-scale and meso-scale simulation are used to investigate on the gas transport mechanisms in micro-nano porous media. DSMC micro simulation method is utilized to obtain the application condition of single tube coupled gas transport model for existing modified real gas. The meso-scale simulation method is built which considers the real gas effect, micro-scale effect (adsorption layer, Knudsen diffusion), adsorption and disorption modified LBM method, pore network model, thus to obtain the minimum pore size by LBM simulation. Three dimensional shale and tight digital core are simulated by the meso-scale simulation method to obtain the application condition of existing coupled transport model in porous media. Furthermore, the accurate and general coupled gas transport model in real core is established, which build the foundation for macro-scale numerical simulation of shale gas and tight gas reservoir.
英文关键词: gas transport;tight porous media;digital rock;Lattice Boltzmann;Micro-nano scale