Maintaining an up-to-date map to reflect recent changes in the scene is very important, particularly in situations involving repeated traversals by a robot operating in an environment over an extended period. Undetected changes may cause a deterioration in map quality, leading to poor localization, inefficient operations, and lost robots. Volumetric methods, such as truncated signed distance functions (TSDFs), have quickly gained traction due to their real-time production of a dense and detailed map, though map updating in scenes that change over time remains a challenge. We propose a framework that introduces a novel probabilistic object state representation to track object pose changes in semi-static scenes. The representation jointly models a stationarity score and a TSDF change measure for each object. A Bayesian update rule that incorporates both geometric and semantic information is derived to achieve consistent online map maintenance. To extensively evaluate our approach alongside the state-of-the-art, we release a novel real-world dataset in a warehouse environment. We also evaluate on the public ToyCar dataset. Our method outperforms state-of-the-art methods on the reconstruction quality of semi-static environments.
翻译:维护最新地图以反映现场最新变化非常重要, 特别是在机器人在长期环境中操作的机器人反复穿行的情况下。 未察觉的变化可能导致地图质量恶化, 导致本地化不良, 操作效率低下, 机器人丢失。 诸如短短签名距离功能( TSDFs) 等量子学方法, 由于其实时制作密度大而详细的地图, 很快获得了牵引, 尽管在随着时间的推移变化的场景中更新地图仍是一个挑战。 我们提议一个框架, 引入一个新颖的概率性物体状态代表来跟踪对象, 以显示半静态场景的变化。 表示方式共同模拟每个对象的定点性得分和TSDF变化度。 一个包含几何和语义信息的规则可以实现一致的在线地图维护。 为了与最新工艺一起广泛评估我们的方法, 我们在一个仓库环境中发布一个新的真实世界数据集。 我们还对公共ToyCarst数据集进行了评估。 我们的方法在重建半科学环境质量上超越了状态方法。