Given a sequence of sets, where each set is associated with a timestamp and contains an arbitrary number of elements, the task of temporal sets prediction aims to predict the elements in the subsequent set. Previous studies for temporal sets prediction mainly capture each user's evolutionary preference by learning from his/her own sequence. Although insightful, we argue that: 1) the collaborative signals latent in different users' sequences are essential but have not been exploited; 2) users also tend to show stationary preferences while existing methods fail to consider. To this end, we propose an integrated learning framework to model both the evolutionary and the stationary preferences of users for temporal sets prediction, which first constructs a universal sequence by chronologically arranging all the user-set interactions, and then learns on each user-set interaction. In particular, for each user-set interaction, we first design an evolutionary user preference modelling component to track the user's time-evolving preference and exploit the latent collaborative signals among different users. This component maintains a memory bank to store memories of the related user and elements, and continuously updates their memories based on the currently encoded messages and the past memories. Then, we devise a stationary user preference modelling module to discover each user's personalized characteristics according to the historical sequence, which adaptively aggregates the previously interacted elements from dual perspectives with the guidance of the user's and elements' embeddings. Finally, we develop a set-batch algorithm to improve the model efficiency, which can create time-consistent batches in advance and achieve 3.5x training speedups on average. Experiments on real-world datasets demonstrate the effectiveness and good interpretability of our approach.


翻译:根据一组数据集的顺序,每个数据集都与一个时间戳相联,并包含任意的元素数量,时间数据集的预测任务旨在预测随后一组的元素。以往的时间数据集预测研究主要通过学习每个用户的顺序来捕捉每个用户的进化偏好。虽然我们有洞察力,但我们认为:1) 不同用户序列中潜伏的协作信号至关重要,但并未加以利用;2) 用户还倾向于显示固定的偏好,而现有方法则不予考虑。为此,我们提议建立一个综合学习框架,以模拟用户对时间数据集预测的进化和固定偏好,首先通过按时间顺序安排所有用户集的相互作用来构建一个通用序列,然后学习每个用户的进化偏好。特别是,对于每个用户设置的互动,我们首先设计一个进化的用户偏好模型组件来跟踪用户的时间变化偏好,利用不同用户之间潜伏的协作信号。这个组件保留一个存储相关用户和元素的记忆库,并根据当前编码的信息和过去的记忆不断更新他们的记忆。然后,我们从时间顺序来构建通用的全局性序列,我们用历史模型来分析每个用户的进化的进化模型,然后从每个用户的进化的进化的进化的进化的进化模型到进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化的进化过程。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
165+阅读 · 2020年3月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
154+阅读 · 2019年10月12日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
78+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
104+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2022年8月3日
Cold-start Sequential Recommendation via Meta Learner
Arxiv
15+阅读 · 2020年12月10日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium4
中国图象图形学学会CSIG
0+阅读 · 2021年11月10日
【ICIG2021】Latest News & Announcements of the Plenary Talk2
中国图象图形学学会CSIG
0+阅读 · 2021年11月2日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员