Knowledge enhanced pre-trained language models (K-PLMs) are shown to be effective for many public tasks in the literature but few of them have been successfully applied in practice. To address this problem, we propose K-AID, a systematic approach that includes a low-cost knowledge acquisition process for acquiring domain knowledge, an effective knowledge infusion module for improving model performance, and a knowledge distillation component for reducing the model size and deploying K-PLMs on resource-restricted devices (e.g., CPU) for real-world application. Importantly, instead of capturing entity knowledge like the majority of existing K-PLMs, our approach captures relational knowledge, which contributes to better-improving sentence-level text classification and text matching tasks that play a key role in question answering (QA). We conducted a set of experiments on five text classification tasks and three text matching tasks from three domains, namely E-commerce, Government, and Film&TV, and performed online A/B tests in E-commerce. Experimental results show that our approach is able to achieve substantial improvement on sentence-level question answering tasks and bring beneficial business value in industrial settings.


翻译:为解决这一问题,我们建议K-AID, 这是一种系统化的方法,包括低成本知识获取过程,用于获取域知识,一个有效的知识注入模块,以及一个知识提炼部分,用于缩小模型规模和在资源限制装置(如CPU)上部署K-PLMs,用于实际应用。重要的是,我们的方法不是捕捉现有K-PLMs中的大多数这样的实体知识,而是捕捉关系知识,这有助于更好地改进判决一级的文本分类和文本匹配任务,这些任务在回答问题(QA)中起着关键作用。我们就5项文本分类任务和3项文本匹配任务进行了一系列实验,这3项任务来自3个领域,即电子商务、政府、电影和电视,并在电子商务中进行在线A/B测试。实验结果表明,我们的方法能够大大改进判决层面的回答任务,并在工业环境中带来有益的商业价值。

15
下载
关闭预览

相关内容

【知识图谱@EMNLP2020】Knowledge Graphs in NLP @ EMNLP 2020
专知会员服务
42+阅读 · 2020年11月22日
【知识图谱@ACL2020】Knowledge Graphs in Natural Language Processing
专知会员服务
65+阅读 · 2020年7月12日
图卷积神经网络蒸馏知识,Distillating Knowledge from GCN
专知会员服务
94+阅读 · 2020年3月25日
【AAAI2020知识图谱论文概述】Knowledge Graphs @ AAAI 2020
专知会员服务
133+阅读 · 2020年2月13日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Arxiv
28+阅读 · 2021年10月1日
Arxiv
21+阅读 · 2019年8月21日
VIP会员
相关资讯
论文小综 | Using External Knowledge on VQA
开放知识图谱
10+阅读 · 2020年10月18日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|深度强化学习聊天机器人(附论文)!
全球人工智能
4+阅读 · 2018年1月30日
Top
微信扫码咨询专知VIP会员