Traditional seismic processing workflows (SPW) are expensive, requiring over a year of human and computational effort. Deep learning (DL) based data-driven seismic workflows (DSPW) hold the potential to reduce these timelines to a few minutes. Raw seismic data (terabytes) and required subsurface prediction (gigabytes) are enormous. This large-scale, spatially irregular time-series data poses seismic data ingestion (SDI) as an unconventional yet fundamental problem in DSPW. Current DL research is limited to small-scale simplified synthetic datasets as they treat seismic data like images and process them with convolution networks. Real seismic data, however, is at least 5D. Applying 5D convolutions to this scale is computationally prohibitive. Moreover, raw seismic data is highly unstructured and hence inherently non-image like. We propose a fundamental shift to move away from convolutions and introduce SESDI: Set Embedding based SDI approach. SESDI first breaks down the mammoth task of large-scale prediction into an efficient compact auxiliary task. SESDI gracefully incorporates irregularities in data with its novel model architecture. We believe SESDI is the first successful demonstration of end-to-end learning on real seismic data. SESDI achieves SSIM of over 0.8 on velocity inversion task on real proprietary data from the Gulf of Mexico and outperforms the state-of-the-art U-Net model on synthetic datasets.
翻译:传统的地震处理工作流程(SPW)费用昂贵,需要一年多的人力和计算努力。深度学习(DL)基于数据驱动的地震工作流程(DSPW)具有将时间缩短到几分钟的潜力。原始地震数据(兆字节)和所需的地表下预测(gigabytes)是巨大的。这种大规模、空间上不规律的时间序列数据使地震数据摄取成为DSPW一个非常规但又根本性的问题。目前的DL研究仅限于小规模简化合成数据集,因为它们处理像图像那样的地震数据,并将这些数据与卷变网络进行处理。然而,真正的地震数据数据数据至少为5D。将5D变化应用到这一规模是计算上令人无法接受的。此外,原始地震数据结构高度不结构化,因此本质上不具有类似作用。我们建议从根本上转变,从卷变数据(SDI)向SESDI推出基于嵌入模型的模型。SESDI首次将大型预测的大型缩略成任务分成一个高效的缩尾辅助任务。SESDI的精度将SESA正式数据在SMA数据模型中成功进行SIM格式的校验。