Deep convolutional neural networks (CNN) have achieved astonishing results in a large variety of applications. However, using these models on mobile or embedded devices is difficult due to the limited memory and computation resources. Recently, the inverted residual block becomes the dominating solution for the architecture design of compact CNNs. In this work, we comprehensively investigated the existing design concepts, rethink the functional characteristics of two pointwise convolutions in the inverted residuals. We propose a novel design, called asymmetrical bottlenecks. Precisely, we adjust the first pointwise convolution dimension, enrich the information flow by feature reuse, and migrate saved computations to the second pointwise convolution. By doing so we can further improve the accuracy without increasing the computation overhead. The asymmetrical bottlenecks can be adopted as a drop-in replacement for the existing CNN blocks. We can thus create AsymmNet by easily stack those blocks according to proper depth and width conditions. Extensive experiments demonstrate that our proposed block design is more beneficial than the original inverted residual bottlenecks for mobile networks, especially useful for those ultralight CNNs within the regime of <220M MAdds. Code is available at https://github.com/Spark001/AsymmNet


翻译:深相神经网络(CNN)在各种应用中取得了惊人的成果。然而,由于记忆和计算资源有限,很难在移动或嵌入设备上使用这些模型,因为记忆和计算资源有限,因此很难在移动或嵌入设备上使用这些模型。最近,倒置残余块成为紧凑CNN的建筑设计的主要解决方案。在这项工作中,我们全面调查了现有的设计概念,重新思考了倒置残余物中两个点相联相联的功能性特征。我们提出了称为不对称瓶颈的新设计。确切地说,我们调整了第一个点相联维度,通过特性再利用来丰富信息流,并将节省的计算迁移到第二个点相联。通过这样做,我们可以进一步提高准确性,而不增加计算间接费用。对称的瓶颈可以作为现有CNN区块的空置替换。因此,我们可以通过在适当的深度和宽度条件下轻易堆积这些区块来创建AsymmNet。我们拟议的区块设计比最初的倒置残余瓶颈更有益,特别是对于 < 220MAddmass/Mampus系统内的超光线CNNMSmum 代码。

0
下载
关闭预览

相关内容

Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Arxiv
0+阅读 · 2021年6月6日
Geometric Graph Convolutional Neural Networks
Arxiv
10+阅读 · 2019年9月11日
Scale-Aware Trident Networks for Object Detection
Arxiv
4+阅读 · 2019年1月7日
SlowFast Networks for Video Recognition
Arxiv
19+阅读 · 2018年12月10日
Arxiv
3+阅读 · 2018年10月25日
VIP会员
相关VIP内容
Python分布式计算,171页pdf,Distributed Computing with Python
专知会员服务
108+阅读 · 2020年5月3日
【ICLR-2020】网络反卷积,NETWORK DECONVOLUTION
专知会员服务
39+阅读 · 2020年2月21日
相关资讯
分布式并行架构Ray介绍
CreateAMind
10+阅读 · 2019年8月9日
深度卷积神经网络中的降采样
极市平台
12+阅读 · 2019年5月24日
Ray RLlib: Scalable 降龙十八掌
CreateAMind
9+阅读 · 2018年12月28日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
(TensorFlow)实时语义分割比较研究
机器学习研究会
9+阅读 · 2018年3月12日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Top
微信扫码咨询专知VIP会员