题目
二值神经网络综述,Binary Neural Networks: A Survey
关键词
二进制神经网络,深度学习,模型压缩,网络量化,模型加速
简介
二进制神经网络在很大程度上节省了存储和计算成本,是一种在资源有限的设备上部署深度模型的有前途的技术。 然而,二值化不可避免地导致严重的信息丢失,甚至更糟的是,其不连续性给深度网络的优化带来了困难。 为了解决这些问题,近年来提出了多种算法,并取得了令人满意的进展。 在本文中,我们对这些算法进行了全面的概述,主要分为直接进行二值化的本机解决方案,以及使用使量化误差最小化,改善网络损耗函数和减小梯度误差等技术进行优化的解决方案。 我们还将研究二进制神经网络的其他实用方面,例如硬件友好的设计和训练技巧。 然后,我们对不同的任务进行了评估和讨论,包括图像分类,对象检测和语义分割。 最后,展望了未来研究可能面临的挑战。
作者
Haotong Qina , Ruihao Gonga , Xianglong Liu∗a,b, Xiao Baie , Jingkuan Songc , Nicu Sebe