Bayesian optimization (BO) is a popular methodology to tune the hyperparameters of expensive black-box functions. Traditionally, BO focuses on a single task at a time and is not designed to leverage information from related functions, such as tuning performance objectives of the same algorithm across multiple datasets. In this work, we introduce a novel approach to achieve transfer learning across different \emph{datasets} as well as different \emph{objectives}. The main idea is to regress the mapping from hyperparameter to objective quantiles with a semi-parametric Gaussian Copula distribution, which provides robustness against different scales or outliers that can occur in different tasks. We introduce two methods to leverage this mapping: a Thompson sampling strategy as well as a Gaussian Copula process using such quantile estimate as a prior. We show that these strategies can combine the estimation of multiple objectives such as latency and accuracy, steering the hyperparameters optimization toward faster predictions for the same level of accuracy. Extensive experiments demonstrate significant improvements over state-of-the-art methods for both hyperparameter optimization and neural architecture search.
翻译:贝叶斯优化( BO ) 是调和昂贵黑盒功能的超参数的流行方法。 传统上, BO 以一次性的单一任务为重点, 而不是设计来利用相关功能的信息, 比如对多个数据集的同一算法的性能目标进行调适。 在这项工作中, 我们引入了一种新颖的方法, 实现不同 emph{ dataset} 和不同 emph{ 客观 的转移学习。 主要的想法是将绘图从超参数倒退到具有半参数高斯可普拉分布的客观量化, 提供在不同任务中可以出现的不同尺度或外部值的强健性。 我们引入了两种方法来利用这种绘图: 汤普森取样战略和高斯可普拉进程, 使用像先前那样的量估计值。 我们表明, 这些战略可以结合对多种目标的估算, 如粘度和精确度, 引导超参数优化到同一精确度的更快的预测。 广泛实验显示, 超过超偏差的超度优化和神经搜索结构的状态方法的显著改进 。