The vast amount of health data has been continuously collected for each patient, providing opportunities to support diverse healthcare predictive tasks such as seizure detection and hospitalization prediction. Existing models are mostly trained on other patients data and evaluated on new patients. Many of them might suffer from poor generalizability. One key reason can be overfitting due to the unique information related to patient identities and their data collection environments, referred to as patient covariates in the paper. These patient covariates usually do not contribute to predicting the targets but are often difficult to remove. As a result, they can bias the model training process and impede generalization. In healthcare applications, most existing domain generalization methods assume a small number of domains. In this paper, considering the diversity of patient covariates, we propose a new setting by treating each patient as a separate domain (leading to many domains). We develop a new domain generalization method ManyDG, that can scale to such many-domain problems. Our method identifies the patient domain covariates by mutual reconstruction and removes them via an orthogonal projection step. Extensive experiments show that ManyDG can boost the generalization performance on multiple real-world healthcare tasks (e.g., 3.7% Jaccard improvements on MIMIC drug recommendation) and support realistic but challenging settings such as insufficient data and continuous learning.
翻译:不断为每个病人收集了大量的健康数据,这为支助各种保健预测任务提供了机会,如缉获检测和住院预测等。现有模型大多在其他病人数据方面得到培训,并对新病人进行评估。其中许多模型可能缺乏一般性。一个关键原因可能是由于病人身份及其数据收集环境方面的独特信息(在文件中被称为病人共变体)而过于合适。这些病人共变体通常无助于预测目标,但往往难以消除。结果,它们可能偏向示范培训过程,阻碍普及化。在保健应用中,大多数现有通用方法都包含少量领域。在本文中,考虑到病人共变数的多样性,我们提出一个新的设置,将每个病人视为一个单独的领域(导致许多领域)。我们开发了一种新的域化方法,许多DG,可以将范围扩大到如此众多的问题。我们的方法是通过相互重建确定病人的域变异体,并通过一个或多层次的预测步骤将其删除。广泛的实验显示,在多种现实的、现实的、但具有挑战性的、但具有挑战性的、具有挑战性的、具有挑战性的、具有挑战性的、具有生命力的、具有挑战性的、具有挑战性的、具有挑战性的、具有生命力的、具有生命力的、具有挑战性的、具有挑战性的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命力的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命的、具有生命力的、具有生命力的、具有生命力的、具有生命力的、具有生命的、具有生命力的、具有生命的、