We study out-of-distribution (OOD) prediction behavior of neural networks when they classify images from unseen classes or corrupted images. To probe the OOD behavior, we introduce a new measure, nearest category generalization (NCG), where we compute the fraction of OOD inputs that are classified with the same label as their nearest neighbor in the training set. Our motivation stems from understanding the prediction patterns of adversarially robust networks, since previous work has identified unexpected consequences of training to be robust to norm-bounded perturbations. We find that robust networks have consistently higher NCG accuracy than natural training, even when the OOD data is much farther away than the robustness radius. This implies that the local regularization of robust training has a significant impact on the network's decision regions. We replicate our findings using many datasets, comparing new and existing training methods. Overall, adversarially robust networks resemble a nearest neighbor classifier when it comes to OOD data. Code available at https://github.com/yangarbiter/nearest-category-generalization.


翻译:我们研究神经网络在对来自隐蔽类别或腐败图像的图像进行分类时的分布(OOOD)预测行为。为了调查OOD行为,我们引入了一种新的措施,即最近的分类(NGG),即我们计算OOD投入的分数与培训组中最近的邻居的标签相同。我们的动机来自理解敌对强势网络的预测模式,因为先前的工作已经确定了培训对受规范限制的扰动具有强力的意外后果。我们发现,强势网络的NCG准确性一直高于自然培训,即使OOD数据远比强度半径远。这意味着稳健培训的本地正规化对网络的决策区域有重大影响。我们利用许多数据集复制我们的调查结果,比较新的和现有的培训方法。总体而言,强势网络在使用OD数据时类似于最近的邻居分类器。代码可在https://github.com/yangarbiter/nearest-分类中查阅。</s>

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
76+阅读 · 2022年6月28日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
167+阅读 · 2020年3月18日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
16+阅读 · 2021年3月2日
Arxiv
10+阅读 · 2021年2月18日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
18+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员