We develop and implement a novel fast bootstrap for dependent data. Our scheme is based on the i.i.d. resampling of the smoothed moment indicators. We characterize the class of parametric and semi-parametric estimation problems for which the method is valid. We show the asymptotic refinements of the proposed procedure, proving that it is higher-order correct under mild assumptions on the time series, the estimating functions, and the smoothing kernel. We illustrate the applicability and the advantages of our procedure for Generalized Empirical Likelihood estimation. As a by-product, our fast bootstrap provides higher-order correct asymptotic confidence distributions. Monte Carlo simulations on an autoregressive conditional duration model provide numerical evidence that the novel bootstrap yields higher-order accurate confidence intervals. A real-data application on dynamics of trading volume of stocks illustrates the advantage of our method over the routinely-applied first-order asymptotic theory, when the underlying distribution of the test statistic is skewed or fat-tailed.
翻译:我们为依赖数据开发和实施一个新的快速陷阱。 我们的计划基于对平滑时刻指标的一.d. 重新抽样。 我们确定方法有效的参数和半参数估计问题类别。 我们展示了拟议程序的无症状改进,证明在时间序列、估计功能和平稳内核的轻度假设下,该程序是更高等级的正确。 我们举例说明了我们普遍应用的实验性亲近估计程序的适用性和优点。 作为副产品,我们的快速靴子提供了更高等级的正确性活性信心分布。 自动递减性有条件期限模型的蒙特卡洛模拟提供了数字证据,证明新靴子生成了更高顺序准确的信任间隔。 关于股票交易量动态的真实数据应用显示了我们方法在常规应用第一顺序的理论上所具有的优势,当测试统计数据的基本分布被扭曲或脂肪分解时。