项目名称: 基于核方法的非局部图像处理
项目编号: No.61201297
项目类型: 青年科学基金项目
立项/批准年度: 2013
项目学科: 电子学与信息系统
项目作者: 杨雨茜
作者单位: 西安电子科技大学
项目金额: 23万元
中文摘要: 核回归方法作为图像处理方法的一个重要分支,被广泛研究。它的主要思想是用核函数计算回归估计的权重,近邻点或者像素值相近的点被赋予较大的权重。但是在实际应用中,噪声的存在导致核函数不能很好反应两点的相近程度,图像的边界点以及其他特征点很可能被平滑而噪声点却被增强。因此寻找合适的度量来反映图像的边界点是图像增强亟待解决的问题。本项目以改善图像增强效果为目的,围绕核回归方法展开,研究高阶核回归方法的性质,并结合非局部的思想应用于图像处理。算法的核心思想是:采用非局部的方法计算核回归中的权重系数,将高阶核回归用于图像增强。算法的关键是核函数的阶数的选取。基于上述思想设计的算法,有望改善核回归在图像增强中的性能,使其在解决遥感图像以及医学图像增强的问题中得到广泛应用。
中文关键词: 核方法;图像;噪声;高阶;平滑
英文摘要: Kernel regression method is an important branch in image processing. It is widely researched recently. The main idea is kernel regression is used to compute the weight in image estiamtion,so the neighborhood pixels are given the larger weight. But in application,kernel function can not reflect two similar pixels because of noise. The edge pixels and other important pixels may be smoothed and noise pixels is likely to be enhanced. It is important to find a measure for discontinuity points in image. This project focus on improving the image enhancement. We use the kernel regression method and research the property of the higher order kernel regression methods. The higher order kernel regression is applied in nonlocal image processing. The key is the order which we select in our method. The algorithms based on these idea can improve the kernel regression results in image enhancement.Then they can be applied in medical images and SAR images.
英文关键词: kernel;image;noise;higher-order;smoothing