This paper introduces a new simulation-based inference procedure to model and sample from multi-dimensional probability distributions given access to i.i.d. samples, circumventing the usual approaches of explicitly modeling the density function or designing Markov chain Monte Carlo. Motivated by the seminal work on distance and isomorphism between metric measure spaces, we propose a new notion called the Reversible Gromov-Monge (RGM) distance and study how RGM can be used to design new transform samplers to perform simulation-based inference. Our RGM sampler can also estimate optimal alignments between two heterogeneous metric measure spaces $(\mathcal{X}, \mu, c_{\mathcal{X}})$ and $(\mathcal{Y}, \nu, c_{\mathcal{Y}})$ from empirical data sets, with estimated maps that approximately push forward one measure $\mu$ to the other $\nu$, and vice versa. Analytic properties of the RGM distance are derived; statistical rate of convergence, representation, and optimization questions regarding the induced sampler are studied. Synthetic and real-world examples showcasing the effectiveness of the RGM sampler are also demonstrated.
翻译:本文介绍了一个新的基于模拟的推论程序,用于建模和采样的多维概率分布的模型和样本,并提供了i.d.样本,绕过明确模拟密度函数或设计Markov 链的通常方法,或设计Markov 链 Monte Carlo 。我们从实验数据集中从关于距离和度量空间之间无形态的原始工作中得到动力,提出了一个新的概念,称为Reversible Gromov-Monge(RGM)距离,并研究如何利用RGM设计新的变异采样器进行模拟推断。我们的RGM取样器还可以估计两个多元计量空间($(mathcal{X},\mu,cámcthcal{X ⁇ )美元和$(mathcal{Y},\nu,cámathcal{Y ⁇ )之间的最佳比对最佳比对最佳比对。 合成基因模型和真实的比分析特性得到推算出;关于导采样样品样本的趋近率、代表和优化问题的统计率也得到研究。