Pixel-level analysis of blood images plays a pivotal role in diagnosing blood-related diseases, especially Anaemia. These analyses mainly rely on an accurate diagnosis of morphological deformities like shape, size, and precise pixel counting. In traditional segmentation approaches, instance or object-based approaches have been adopted that are not feasible for pixel-level analysis. The convolutional neural network (CNN) model required a large dataset with detailed pixel-level information for the semantic segmentation of red blood cells in the deep learning domain. In current research work, we address these problems by proposing a multi-level deep convolutional encoder-decoder network along with two state-of-the-art healthy and Anaemic-RBC datasets. The proposed multi-level CNN model preserved pixel-level semantic information extracted in one layer and then passed to the next layer to choose relevant features. This phenomenon helps to precise pixel-level counting of healthy and anaemic-RBC elements along with morphological analysis. For experimental purposes, we proposed two state-of-the-art RBC datasets, i.e., Healthy-RBCs and Anaemic-RBCs dataset. Each dataset contains 1000 images, ground truth masks, relevant, complete blood count (CBC), and morphology reports for performance evaluation. The proposed model results were evaluated using crossmatch analysis with ground truth mask by finding IoU, individual training, validation, testing accuracies, and global accuracies using a 05-fold training procedure. This model got training, validation, and testing accuracies as 0.9856, 0.9760, and 0.9720 on the Healthy-RBC dataset and 0.9736, 0.9696, and 0.9591 on an Anaemic-RBC dataset. The IoU and BFScore of the proposed model were 0.9311, 0.9138, and 0.9032, 0.8978 on healthy and anaemic datasets, respectively.


翻译:对血液图像进行等离子层分析在诊断血液相关疾病,特别是贫血病方面发挥着关键作用。这些分析主要依靠对形状、大小和精确像素计等形态变形的准确诊断。 在传统的分解方法中,采用了对像素级分析不可行的实例或物体法。 遗传神经网络模型需要大型数据集,其中有详细的像素级信息,用于在深层学习领域红血红血球的分解。 在目前的研究工作中,我们通过提出一个多层次的 流星级 流星级 流星级变形变形网络,如形状、大小和精确度等。 在实验中,我们提出了多层次的CNN模型保存像素级的静态信息,然后传递到下一个层次,以选择相关的特征。 这个现象有助于精确的像素级的计算, 健康和红细胞的分解元素以及形态学分析, 我们提出了两个州级的、 直星级的DNA数据测试 数据, 以及一个相关的数据,一个是 以B.

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
专知会员服务
123+阅读 · 2020年9月8日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关资讯
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
《pyramid Attention Network for Semantic Segmentation》
统计学习与视觉计算组
44+阅读 · 2018年8月30日
ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
全球人工智能
19+阅读 · 2017年12月17日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
语义分割中的深度学习方法全解:从FCN、SegNet到DeepLab
炼数成金订阅号
26+阅读 · 2017年7月10日
相关基金
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
6+阅读 · 2013年12月31日
国家自然科学基金
4+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员