Accurate extraction of the Region of Interest is critical for successful ocular region-based biometrics. In this direction, we propose a new context-based segmentation approach, entitled Ocular Region Context Network (ORCNet), introducing a specific loss function, i.e., he Punish Context Loss (PC-Loss). The PC-Loss punishes the segmentation losses of a network by using a percentage difference value between the ground truth and the segmented masks. We obtain the percentage difference by taking into account Biederman's semantic relationship concepts, in which we use three contexts (semantic, spatial, and scale) to evaluate the relationships of the objects in an image. Our proposal achieved promising results in the evaluated scenarios: iris, sclera, and ALL (iris + sclera) segmentations, utperforming the literature baseline techniques. The ORCNet with ResNet-152 outperforms the best baseline (EncNet with ResNet-152) on average by 2.27%, 28.26% and 6.43% in terms of F-Score, Error Rate and Intersection Over Union, respectively. We also provide (for research purposes) 3,191 manually labeled masks for the MICHE-I database, as another contribution of our work.
翻译:精确地提取利益区对于成功的视觉区域生物测定至关重要。 在这方面,我们提出一种新的基于背景的分解方法,名为“特定区域背景网络”,引入了一种具体的损失功能,即他惩罚背景损失(PC-Los);PC-Los 利用地面真相和隔段遮罩之间的百分比差值,对网络的分解损失进行惩罚。我们考虑到Biederman的语义关系概念,即我们使用三种环境(静态、空间和比例)来评估图像中对象的关系,我们的提案在评估的情景中取得了有希望的结果:iris、sclasra和ALLAL(IRis +sclesra)分解,运用了文献基线技术。ResNet-152的ORCNet平均以2.27%、28.26%和6.43%的方位差错率和跨段为最佳基线(ResNet-152的EncNet)比最佳基数(ResNet-152)要高出2.27%、28.26%和6.4%,用于评估图像中对象的关系。我们的提案在评估的情景中取得了有希望的结果:iris、scra、sclas 和AL +screareareareareare),我们提供了另外的MICI 的工作数据库数据库。