Deep learning occupies an undisputed dominance in crowd counting. In this paper, we propose a novel convolutional neural network (CNN) architecture called SegCrowdNet. Despite the complex background in crowd scenes, the proposeSegCrowdNet still adaptively highlights the human head region and suppresses the non-head region by segmentation. With the guidance of an attention mechanism, the proposed SegCrowdNet pays more attention to the human head region and automatically encodes the highly refined density map. The crowd count can be obtained by integrating the density map. To adapt the variation of crowd counts, SegCrowdNet intelligently classifies the crowd count of each image into several groups. In addition, the multi-scale features are learned and extracted in the proposed SegCrowdNet to overcome the scale variations of the crowd. To verify the effectiveness of our proposed method, extensive experiments are conducted on four challenging datasets. The results demonstrate that our proposed SegCrowdNet achieves excellent performance compared with the state-of-the-art methods.
翻译:深层学习在人群计数中占据无可争议的主导地位 。 在本文中, 我们提议建立一个名为 SegCrowdNet 的新型进化神经网络(CNN) 结构。 尽管人群场景背景复杂, 提议的SegCrowdNet 仍然适应性地突出人类头部区域, 并通过分割压制非头部区域 。 在关注机制的指导下, 拟议的SegCrowdNet 更加关注人类头部区域, 并自动编码高精度密度地图 。 通过整合密度地图, 就可以获得人群计数。 为了调整人群计数的差异, SegCrowdNet 明智地将每张图像的人群计数分为几组。 此外, 在拟议的SegCrowdNet 中学习并提取了多尺度特征, 以克服人群的规模变化 。 为了验证我们拟议方法的有效性, 将在四个具有挑战性的数据集上进行广泛的实验。 结果表明, 我们提议的SegCrowdNet 与最先进的方法相比, 我们提议的SegCrowdNet 取得了出色的业绩。