Synthetic Aperture Radar (SAR) is the main instrument utilized for the detection of oil slicks on the ocean surface. In SAR images, some areas affected by ocean phenomena, such as rain cells, upwellings, and internal waves, or discharge from oil spills appear as dark spots on images. Dark spot detection is the first step in the detection of oil spills, which then become oil slick candidates. The accuracy of dark spot segmentation ultimately affects the accuracy of oil slick identification. Although some advanced deep learning methods that use pixels as processing units perform well in remote sensing image semantic segmentation, detecting some dark spots with weak boundaries from noisy SAR images remains a huge challenge. We propose a dark spot detection method based on superpixels deeper graph convolutional networks (SGDCN) in this paper, which takes the superpixels as the processing units and extracts features for each superpixel. The features calculated from superpixel regions are more robust than those from fixed pixel neighborhoods. To reduce the difficulty of learning tasks, we discard irrelevant features and obtain an optimal subset of features. After superpixel segmentation, the images are transformed into graphs with superpixels as nodes, which are fed into the deeper graph convolutional neural network for node classification. This graph neural network uses a differentiable aggregation function to aggregate the features of nodes and neighbors to form more advanced features. It is the first time using it for dark spot detection. To validate our method, we mark all dark spots on six SAR images covering the Baltic Sea and construct a dark spots detection dataset, which has been made publicly available (https://drive.google.com/drive/folders/12UavrntkDSPrItISQ8iGefXn2gIZHxJ6?usp=sharing). The experimental results demonstrate that our proposed SGDCN is robust and effective.


翻译:合成孔径雷达(SAR)是用来探测海洋表面浮油的主要工具。在SAR图像中,受海洋现象影响的一些地区,如雨细胞、升水、内部波浪或石油溢漏排放等,似乎是图像中的暗点。暗点探测是探测石油溢漏的第一个步骤,然后成为浮油候选物。暗点分解的准确性最终影响浮油识别的准确性。虽然一些使用像素的高级深层学习方法在遥感图像解析中表现良好,在暗色SAR图像中发现一些有较弱边界的暗点仍然是巨大的挑战。我们提议在超像素更深的图形变异网络上采用暗点探测方法(SGDCN ) 。从超像素区域计算出来的特征比固定像素邻居的特性要强得多。为了减少学习任务的难度,我们抛弃了不相相关的特性,并获得了一些最优的地貌特征。在超像点的图形变异点上,我们用SGDRIS 将图像转换成一个更深的图像系统, 。 将Sqolaldeal develild 将Sal dreal drealde 数据转换成一个不同的系统, 。

0
下载
关闭预览

相关内容

专知会员服务
60+阅读 · 2020年3月19日
100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
已删除
Arxiv
32+阅读 · 2020年3月23日
Arxiv
23+阅读 · 2018年10月1日
VIP会员
相关资讯
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Call for Nominations: 2022 Multimedia Prize Paper Award
CCF多媒体专委会
0+阅读 · 2022年2月12日
【ICIG2021】Latest News & Announcements of the Tutorial
中国图象图形学学会CSIG
3+阅读 · 2021年12月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
1+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员