We propose a data-driven portfolio selection model that integrates side information, conditional estimation and robustness using the framework of distributionally robust optimization. Conditioning on the observed side information, the portfolio manager solves an allocation problem that minimizes the worst-case conditional risk-return trade-off, subject to all possible perturbations of the covariate-return probability distribution in an optimal transport ambiguity set. Despite the non-linearity of the objective function in the probability measure, we show that the distributionally robust portfolio allocation with side information problem can be reformulated as a finite-dimensional optimization problem. If portfolio decisions are made based on either the mean-variance or the mean-Conditional Value-at-Risk criterion, the resulting reformulation can be further simplified to second-order or semi-definite cone programs. Empirical studies in the US equity market demonstrate the advantage of our integrative framework against other benchmarks.
翻译:我们提议了一个数据驱动组合选择模式,该模式采用分布稳健优化框架整合侧面信息、有条件估算和稳健性。 在所观察到的侧面信息上,组合管理者解决了分配问题,将最坏情况、有条件风险回报的权衡最小化,但前提是在最佳运输指标中共同变差-回报概率分布的所有可能干扰。尽管目标功能在概率度量中不存在线性,但我们表明,分配稳健的组合分配加上侧面信息问题可以重拟为有限维度优化问题。 如果组合决定基于平均变差或平均条件价值-风险标准,由此产生的重组可以进一步简化为次等或半限定的组合方案。美国股票市场的经验研究表明,我们与其他基准相比一体化框架的优势。