Traditional nonparametric estimation methods often lead to a slow convergence rate in large dimensions and require unrealistically enormous sizes of datasets for reliable conclusions. We develop an approach based on mixed gradients, either observed or estimated, to effectively estimate the function at near-parametric convergence rates. The novel approach and computational algorithm could lead to methods useful to practitioners in many areas of science and engineering. Our theoretical results reveal a behavior universal to this class of nonparametric estimation problems. We explore a general setting involving tensor product spaces and build upon the smoothing spline analysis of variance (SS-ANOVA) framework. For $d$-dimensional models under full interaction, the optimal rates with gradient information on $p$ covariates are identical to those for the $(d-p)$-interaction models without gradients and, therefore, the models are immune to the "curse of interaction". For additive models, the optimal rates using gradient information are root-$n$, thus achieving the "parametric rate". We demonstrate aspects of the theoretical results through synthetic and real data applications.
翻译:传统的非参数估算方法往往导致大范围的趋同速度缓慢,需要不切实际的庞大的数据集才能得出可靠的结论。我们根据观察到的或估计的混合梯度制定了一种方法,以近参数趋同率有效估计功能。新颖的方法和计算算法可以导致许多科学和工程领域对实践者有用的方法。我们的理论结果显示一种与这一类非参数估算问题普遍有关的行为。我们探索一种涉及不同产品空间的一般性设置,并借鉴对差异进行平稳的样板分析(SS-ANOVA)框架。对于在充分互动下以美元为单位的多元模型,使用美元同差值的梯度信息的最佳比率与没有梯度的美元(d-p)美元对等模型相同,因此这些模型不受“相互作用”的影响。对于添加型模型而言,使用梯度信息的最佳比率为root-n美元,从而实现“参数率”。我们通过合成和真实数据应用来展示理论结果的各个方面。