In many applications that involve the inference of an unknown smooth function, the inference of its derivatives will often be just as important as that of the function itself. To make joint inferences of the function and its derivatives, a class of Gaussian processes called $p^{\text{th}}$ order Integrated Wiener's Process (IWP), is considered. Methods for constructing a finite element (FEM) approximation of an IWP exist but have focused only on the order $p = 2$ case which does not allow appropriate inference for derivatives, and their computational feasibility relies on additional approximation to the FEM itself. In this article, we propose an alternative FEM approximation, called overlapping splines (O-spline), which pursues computational feasibility directly through the choice of test functions, and mirrors the construction of an IWP as the Ospline results from the multiple integrations of these same test functions. The O-spline approximation applies for any order $p \in \mathbb{Z}^+$, is computationally efficient and provides consistent inference for all derivatives up to order $p-1$. It is shown both theoretically, and empirically through simulation, that the O-spline approximation converges to the true IWP as the number of knots increases. We further provide a unified and interpretable way to define priors for the smoothing parameter based on the notion of predictive standard deviation (PSD), which is invariant to the order $p$ and the placement of the knot. Finally, we demonstrate the practical use of the O-spline approximation through simulation studies and an analysis of COVID death rates where the inference is carried on both the function and its derivatives where the latter has an important interpretation in terms of the course of the pandemic.
翻译:在许多应用中, 涉及到未知的平滑函数的推断, 其衍生物的推论通常与函数本身的推论一样重要。 为了对函数及其衍生物进行联合推论, 需要考虑一个叫作$p ⁇ text{th ⁇ $顺序的Gaussian进程类别, 称为 $p{text{th ⁇ $ 集成维纳进程( IWP) 。 构建一个IWP 有限元素( FEM) 近似的方法存在, 但仅侧重于 $p = 2美元 的情况, 无法对衍生物进行适当的推论, 其计算可行性取决于 FEM 本身的额外近似值。 在本篇文章中, 我们提议一个替代 FEM 近似, 称为重叠的螺旋线( O- Spline), 直接通过选择测试函数来追求计算可行性, 将IWP 的构造作为Ospline 的结果。 Opline loadbloration 适用于任何顺序( $\ in mathal), combbbbb, 并且 提供我们推导测算的推导价值的推导价值, 在OPlation- 1 上, 方向上, 和O- 的精确判解的推算中, 和直判解的推算法, 的推算法, 的推算法的推算法则在后, 的推算法则在后, 上, 上, 上, 的推算法, 和直值的推算法, 的推算法, 的推算法则在前向, 上, 的推算法, 向, 向, 向, 向, 向后 向后向, 向, 向, 向, 向, 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向,, 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向