In many applications that involve the inference of an unknown smooth function, the inference of its derivatives will often be just as important as that of the function itself. To make joint inferences of the function and its derivatives, a class of Gaussian processes called $p^{\text{th}}$ order Integrated Wiener's Process (IWP), is considered. Methods for constructing a finite element (FEM) approximation of an IWP exist but have focused only on the order $p = 2$ case which does not allow appropriate inference for derivatives, and their computational feasibility relies on additional approximation to the FEM itself. In this article, we propose an alternative FEM approximation, called overlapping splines (O-spline), which pursues computational feasibility directly through the choice of test functions, and mirrors the construction of an IWP as the Ospline results from the multiple integrations of these same test functions. The O-spline approximation applies for any order $p \in \mathbb{Z}^+$, is computationally efficient and provides consistent inference for all derivatives up to order $p-1$. It is shown both theoretically, and empirically through simulation, that the O-spline approximation converges to the true IWP as the number of knots increases. We further provide a unified and interpretable way to define priors for the smoothing parameter based on the notion of predictive standard deviation (PSD), which is invariant to the order $p$ and the placement of the knot. Finally, we demonstrate the practical use of the O-spline approximation through simulation studies and an analysis of COVID death rates where the inference is carried on both the function and its derivatives where the latter has an important interpretation in terms of the course of the pandemic.


翻译:在许多应用中, 涉及到未知的平滑函数的推断, 其衍生物的推论通常与函数本身的推论一样重要。 为了对函数及其衍生物进行联合推论, 需要考虑一个叫作$p ⁇ text{th ⁇ $顺序的Gaussian进程类别, 称为 $p{text{th ⁇ $ 集成维纳进程( IWP) 。 构建一个IWP 有限元素( FEM) 近似的方法存在, 但仅侧重于 $p = 2美元 的情况, 无法对衍生物进行适当的推论, 其计算可行性取决于 FEM 本身的额外近似值。 在本篇文章中, 我们提议一个替代 FEM 近似, 称为重叠的螺旋线( O- Spline), 直接通过选择测试函数来追求计算可行性, 将IWP 的构造作为Ospline 的结果。 Opline loadbloration 适用于任何顺序( $\ in mathal), combbbbb, 并且 提供我们推导测算的推导价值的推导价值, 在OPlation- 1 上, 方向上, 和O- 的精确判解的推算中, 和直判解的推算法, 的推算法, 的推算法的推算法则在后, 的推算法则在后, 上, 上, 上, 的推算法, 和直值的推算法, 的推算法, 的推算法则在前向, 上, 的推算法, 向, 向, 向, 向, 向后 向后向, 向, 向, 向, 向, 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向,, 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向 向

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
78+阅读 · 2020年7月26日
专知会员服务
161+阅读 · 2020年1月16日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2023年3月25日
Arxiv
11+阅读 · 2022年9月1日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员