The sum-rank metric is a hybrid between the Hamming metric and the rank metric and suitable for error correction in multishot network coding and distributed storage as well as for the design of quantum-resistant cryptosystems. In this work, we consider the construction and decoding of folded linearized Reed-Solomon (FLRS) codes, which are shown to be maximum sum-rank distance (MSRD) for appropriate parameter choices. We derive an efficient interpolation-based decoding algorithm for FLRS codes that can be used as a list decoder or as a probabilistic unique decoder. The proposed decoding scheme can correct sum-rank errors beyond the unique decoding radius with a computational complexity that is quadratic in the length of the unfolded code. We show how the error-correction capability can be optimized for high-rate codes by an alternative choice of interpolation points. We derive a heuristic upper bound on the decoding failure probability of the probabilistic unique decoder and verify its tightness by Monte Carlo simulations. Further, we study the construction and decoding of folded skew Reed-Solomon codes in the skew metric. Up to our knowledge, FLRS codes are the first MSRD codes with different block sizes that come along with an efficient decoding algorithm.
翻译:总秩度量是汉明度量和秩度量之间的一种混合方式,在多次网络编码和分布式存储的误差纠正以及量子耐量密码系统的设计中均适用。本文考虑折叠线性化雷德-所罗门(FLRS)码的构建和解码,证明了在适当的参数选择下,其可以是最大总秩距离(MSRD)码。我们提出了一种高效的基于插值的FLRS码解码算法,可用作列表解码器或概率唯一解码器使用。所提出的解码方案可以在未折叠码长度的二次计算复杂度下纠正超出唯一解码半径的总秩错误。我们展示了如何通过选择另一种插值点来优化高速率码的纠错能力。我们推导出了概率唯一解码器的解码失败概率的启发式上界,并通过蒙特卡罗模拟验证了其紧密性。此外,我们研究了在偏斜秩度量中构建和解码折叠式偏斜雷德-所罗门码。据我们所知,FLRS码是第一个具有不同块大小并带有有效解码算法的MSRD码。