The sum-rank metric is a hybrid between the Hamming metric and the rank metric and suitable for error correction in multishot network coding and distributed storage as well as for the design of quantum-resistant cryptosystems. In this work, we consider the construction and decoding of folded linearized Reed-Solomon (FLRS) codes, which are shown to be maximum sum-rank distance (MSRD) for appropriate parameter choices. We derive an efficient interpolation-based decoding algorithm for FLRS codes that can be used as a list decoder or as a probabilistic unique decoder. The proposed decoding scheme can correct sum-rank errors beyond the unique decoding radius with a computational complexity that is quadratic in the length of the unfolded code. We show how the error-correction capability can be optimized for high-rate codes by an alternative choice of interpolation points. We derive a heuristic upper bound on the decoding failure probability of the probabilistic unique decoder and verify its tightness by Monte Carlo simulations. Further, we study the construction and decoding of folded skew Reed-Solomon codes in the skew metric. Up to our knowledge, FLRS codes are the first MSRD codes with different block sizes that come along with an efficient decoding algorithm.


翻译:总秩度量是汉明度量和秩度量之间的一种混合方式,在多次网络编码和分布式存储的误差纠正以及量子耐量密码系统的设计中均适用。本文考虑折叠线性化雷德-所罗门(FLRS)码的构建和解码,证明了在适当的参数选择下,其可以是最大总秩距离(MSRD)码。我们提出了一种高效的基于插值的FLRS码解码算法,可用作列表解码器或概率唯一解码器使用。所提出的解码方案可以在未折叠码长度的二次计算复杂度下纠正超出唯一解码半径的总秩错误。我们展示了如何通过选择另一种插值点来优化高速率码的纠错能力。我们推导出了概率唯一解码器的解码失败概率的启发式上界,并通过蒙特卡罗模拟验证了其紧密性。此外,我们研究了在偏斜秩度量中构建和解码折叠式偏斜雷德-所罗门码。据我们所知,FLRS码是第一个具有不同块大小并带有有效解码算法的MSRD码。

0
下载
关闭预览

相关内容

【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
25+阅读 · 2020年10月15日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年5月17日
Arxiv
0+阅读 · 2023年5月14日
VIP会员
相关VIP内容
【硬核书】稀疏多项式优化:理论与实践,220页pdf
专知会员服务
67+阅读 · 2022年9月30日
【干货书】开放数据结构,Open Data Structures,337页pdf
专知会员服务
16+阅读 · 2021年9月17日
【NeurIPS 2020】融入BERT到并行序列模型
专知会员服务
25+阅读 · 2020年10月15日
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
基于PyTorch/TorchText的自然语言处理库
专知
28+阅读 · 2019年4月22日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Capsule Networks解析
机器学习研究会
11+阅读 · 2017年11月12日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员