项目名称: 分数阶非线性偏微分方程的相关数学问题
项目编号: No.11471323
项目类型: 面上项目
立项/批准年度: 2015
项目学科: 数理科学和化学
项目作者: 霍朝辉
作者单位: 中国科学院数学与系统科学研究院
项目金额: 65万元
中文摘要: 拟研究源于量子物理、水波、大气物理、金融经济等科学领域中具有实际应用背景的分数阶的非线性偏微方程的相关数学问题。重点研究: 空间是分数阶的非线性Schr?dinger 方程,时间是分数阶的非线性Schrodinger 方程,拟研究其初值问题解的适定性问题。 此外拟研究一些经典的色散波方程如:KdV方程,一维带导数的非线性Schr?dinger方程,一维Zakharov系统,Kadomtsev- Petviashvili-I方程;拟研究其初值问题解的最佳的适定性问题。本项目的主要方法是调和分析理论。 这都是具有很强的应用背景的问题,在国际非线性偏微分方程研究领域中是本质的和十分重要的前沿课题之一,具有重要的理论意义并在工程数值模拟中具有实际应用价值。
中文关键词: 分数阶非线性偏微分方程;适定性;Cauchy问题;爆破解;色散波方程
英文摘要: The project is to study the related problems of nonlinear fractional partial differential equations,which are derived from quantum physics, water wave, atmospheric physics, economy etc. The focus of the project is mainly to study the local and global well-posedness of solutions for the Cauchy problems of nonlinear fractional partial differential equations, for example: space-fractional Schrodinger equations, time-fractional Schrodinger equations. Moreover, The project is also to study low regularity solutions of some dispersive equations for example: KdV equation, nonlinear Schrodinger equations with derivative, equations, 1D Zakharov system, Kadomtsev-Petviashvili-I equation. The main tool in this project is harmonic analysis. These problems, as ones of the important frontier topics in the field of nonlinear partial differential equations, can also be applied in the engineering theory, application and numerical simulation.
英文关键词: Nonlinear fractional partial equations;Well-posedness;Cauchy problem;Blow-up of solution;dispersive equations