In this paper we consider an approach to improve the performance of exponential integrators/Lawson schemes in cases where the solution of a related, but usually much simpler, problem can be computed efficiently. While for implicit methods such an approach is common (e.g. by using preconditioners), for exponential integrators this has proven more challenging. Here we propose to extract a constant coefficient differential operator from advection-diffusion-reaction equations for which we are then able to compute the required matrix functions efficiently. Both a linear stability analysis and numerical experiments show that the resulting schemes can be unconditionally stable. In fact, we find that exponential integrators and Lawson schemes can have better stability properties than similarly constructed implicit-explicit schemes. We also propose new Lawson type integrators that further improve on these stability properties. The effectiveness of the approach is highlighted by a number of numerical examples in two and three space dimensions.


翻译:在本文中,我们考虑一种方法,以改善指数积分器/劳森方案的性能,在相关但通常更简单的问题的解可有效计算时。虽然对于隐式方法而言这种方法很常见(例如通过使用预处理器),但对于指数积分器来说,这被证明更具挑战性。在此,我们建议从对流-扩散-反应方程中提取一个常数系数微分算子,然后我们能够有效地计算所需的矩阵函数。线性稳定性分析和数值实验表明,得到的方案可以无条件稳定。事实上,我们发现指数积分器和劳森方案可以具有比类似构造的隐式-显式方案更好的稳定性质。我们还提出了新的劳森类型积分器来进一步改善这些稳定性质。该方法的有效性通过二维和三维空间中的许多数值示例突出体现。

0
下载
关闭预览

相关内容

神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
已删除
将门创投
12+阅读 · 2019年7月1日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
神经网络常微分方程 (Neural ODEs) 解析
AI科技评论
40+阅读 · 2019年8月9日
已删除
将门创投
12+阅读 · 2019年7月1日
Hierarchically Structured Meta-learning
CreateAMind
24+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】ResNet, AlexNet, VGG, Inception:各种卷积网络架构的理解
机器学习研究会
20+阅读 · 2017年12月17日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
【推荐】深度学习目标检测概览
机器学习研究会
10+阅读 · 2017年9月1日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员