We consider the case of performing Bayesian inference for stochastic epidemic compartment models, using incomplete time course data consisting of incidence counts that are either the number of new infections or removals in time intervals of fixed length. We eschew the most natural Markov jump process representation for reasons of computational efficiency, and focus on a stochastic differential equation representation. This is further approximated to give a tractable Gaussian process, that is, the linear noise approximation (LNA). Unless the observation model linking the LNA to data is both linear and Gaussian, the observed data likelihood remains intractable. It is in this setting that we consider two approaches for marginalising over the latent process: a correlated pseudo-marginal method and analytic marginalisation via a Gaussian approximation of the observation model. We compare and contrast these approaches using synthetic data before applying the best performing method to real data consisting of removal incidence of oak processionary moth nests in Richmond Park, London. Our approach further allows comparison between various competing compartment models.
翻译:我们考虑使用包含时间间隔内的新感染或移除数量的不完整时间序列数据,在随机流行病计算模型下进行贝叶斯推断。出于计算效率的原因,我们避免使用最自然的马尔可夫跳跃过程表达方式,并将焦点放在随机微分方程表达式上。进一步近似为可行的高斯过程,即线性噪声近似(LNA)。除非LNA与数据相关的观测模型是线性和高斯的,否则观测数据可能性仍然难以处理。在这种情况下,我们考虑了两种对潜在过程进行边际化的方法:相关的伪边缘方法和通过观测模型的高斯逼近的分析化边缘化。我们在使用合成数据进行比较和对最佳表现方法的真实数据的应用中,以Richmond Park,伦敦的橡树毛虫窝移除数为例。我们的方法还允许比较不同竞争性的隔仓模型。