In autonomous driving, the novel objects and lack of annotations challenge the traditional 3D LiDAR semantic segmentation based on deep learning. Few-shot learning is a feasible way to solve these issues. However, currently few-shot semantic segmentation methods focus on camera data, and most of them only predict the novel classes without considering the base classes. This setting cannot be directly applied to autonomous driving due to safety concerns. Thus, we propose a few-shot 3D LiDAR semantic segmentation method that predicts both novel classes and base classes simultaneously. Our method tries to solve the background ambiguity problem in generalized few-shot semantic segmentation. We first review the original cross-entropy and knowledge distillation losses, then propose a new loss function that incorporates the background information to achieve 3D LiDAR few-shot semantic segmentation. Extensive experiments on SemanticKITTI demonstrate the effectiveness of our method.
翻译:在自主驾驶中,小物体和说明的缺失挑战了基于深层学习的传统 3D LiDAR 语义分割法。 少见的学习是解决这些问题的可行方法。 但是, 目前少见的语义分割法侧重于相机数据, 大部分只是预测小类, 不考虑基类。 由于安全考虑, 这种设置不能直接适用于自主驾驶。 因此, 我们提议了一个微小的 3D LiDAR 语义分割法, 同时预测小类和基类。 我们的方法试图解决在普通化的少数语义分割法中的背景模糊问题。 我们首先审查原始的跨热带和知识蒸馏损失, 然后提出一个新的损失函数, 包含背景资料, 以达到 3D LIDAR 的几发语义分割法 。 有关语义学KITTI 的广泛实验展示了我们方法的有效性 。