Understanding the road genome is essential to realize autonomous driving. This highly intelligent problem contains two aspects - the connection relationship of lanes, and the assignment relationship between lanes and traffic elements, where a comprehensive topology reasoning method is vacant. On one hand, previous map learning techniques struggle in deriving lane connectivity with segmentation or laneline paradigms; or prior lane topology-oriented approaches focus on centerline detection and neglect the interaction modeling. On the other hand, the traffic element to lane assignment problem is limited in the image domain, leaving how to construct the correspondence from two views an unexplored challenge. To address these issues, we present TopoNet, the first end-to-end framework capable of abstracting traffic knowledge beyond conventional perception tasks. To capture the driving scene topology, we introduce three key designs: (1) an embedding module to incorporate semantic knowledge from 2D elements into a unified feature space; (2) a curated scene graph neural network to model relationships and enable feature interaction inside the network; (3) instead of transmitting messages arbitrarily, a scene knowledge graph is devised to differentiate prior knowledge from various types of the road genome. We evaluate TopoNet on the challenging scene understanding benchmark, OpenLane-V2, where our approach outperforms all previous works by a great margin on all perceptual and topological metrics. The code would be released soon.
翻译:理解路网是实现自动驾驶的关键问题。这一高度智能的问题包含两个方面—车道的连接关系和车道与交通元素之间的分配关系,需要一个全面的拓扑推理方法。一方面,以前的地图学习技术难以通过分割或车道线范式推导出车道的连接关系;或者车道拓扑导向方法侧重于中心线检测,并忽略了交互建模。另一方面,车辆元素到车道分配问题限制于图像域,尚未探索如何从两个视图中构建对应关系的挑战。为了解决这些问题,我们提出了TopoNet,这是第一个能够抽象传统感知任务之外的交通知识的端到端框架。为了捕捉驾驶场景的拓扑关系,我们引入了三个关键设计:(1)嵌入模块,将二维元素的语义知识纳入统一的特征空间中;(2)精选场景图神经网络,建模关系并实现网络内特征交互;(3)不像无规则地传输消息,设计了场景知识图以区分不同类型的路基先验知识。我们在具有挑战性的场景理解基准测试OpenLane-V2上评估了TopoNet,在所有感知和拓扑指标上均大幅优于所有以前的作品。 代码将很快发布。