项目名称: 低温金刚石对顶砧量子点荧光压力标定

项目编号: No.91536101

项目类型: 重大研究计划

立项/批准年度: 2016

项目学科: 数理科学和化学

项目作者: 孙宝权

作者单位: 中国科学院半导体研究所

项目金额: 90万元

中文摘要: 本项目结合国家基金委的重大研究计划指南中培育项目第8和9项,“物理常数和物理参量高精度测量的新方法”和“精密测量物理关键单元技术攻关研究”范畴提出针对低温金刚石对顶砧压力精确测量标定科学问题为出发点。项目以固态半导体单量子点发光峰高灵敏的压力响应为新的压力标定物理体系,结合低温压力连续调谐新技术开展研究,探索建立可实用的基于量子点荧光的压力精确标定。压力测量将改进常规红宝石压力定标测量精度的100多倍,即红宝石定标精度为100MPa, 而预期量子点的定标精度优于1MPa。研制低温压电陶瓷推动金刚石对顶砧连续加压实验装置。项目的研究包含新的压力标定物理体系和低温连续加压实验技术的创新,该项目的完成将在物理、化学及生物等交叉学科领域基础研究得到应用。

中文关键词: 金刚石对顶砧;压力标定;精密测量;单量子点;荧光

英文摘要: We proposal this research plans of scientific issues for development of novel pressure calibrates with a high resolution of the measured pressure in the diamond anvil cell (DAC).The proposal is based on the items of 8 and 9th of “a novel approach for high resolution measurements of physical constants and parameters” and “a study of key scientific techniques in precision physical measurements”, issued by National Natural Science Foundation of China for the major research plan. We will carry out the work of pressure calibration in DAC in terms of the high sensitive pressure-induced shift of quantum dots (QDs) emission peak, combined with a new in situ applied pressure technique at low temperature, to explore the establishment of QD pressure calibration. This calibration will improve the pressure precision more than 100 times as compared with the Ruby due to the fact that the resolution is 100MPa for Ruby, whereas it is better than 1MPa for QDs at the same pressure-induced shift. At the same time, we will design of the DAC driven by a piezoelectric actuator (PZT) at low temperature. This proposal makes innovation in two fields, such as development of novel pressure calibration using QDs and a technique of tuning DAC in situ driven by a PZT at low temperature. Both the calibration and novel DAC will find their application in the fields of physics, chemistry, biochemistry and earth sciences.

英文关键词: diamond anvil cell;pressure scale;precision measurement ;single quantum dot;fluorescence

成为VIP会员查看完整内容
0

相关内容

专知会员服务
42+阅读 · 2021年9月7日
专知会员服务
29+阅读 · 2021年8月16日
专知会员服务
25+阅读 · 2021年4月2日
专知会员服务
87+阅读 · 2021年3月3日
专知会员服务
31+阅读 · 2021年2月17日
这可能是冬奥会藏得最深的黑科技了
量子位
0+阅读 · 2022年2月18日
顶流谷爱凌,带得动安踏吗?
36氪
0+阅读 · 2022年2月15日
自动化所4K荧光设备获批国家医疗器械注册证
中国科学院自动化研究所
1+阅读 · 2021年9月6日
自动驾驶车载激光雷达技术现状分析
智能交通技术
17+阅读 · 2019年4月9日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2022年4月17日
Synthesizing Informative Training Samples with GAN
Arxiv
0+阅读 · 2022年4月15日
Arxiv
151+阅读 · 2017年8月1日
小贴士
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
微信扫码咨询专知VIP会员