Linear wave equations sourced by a Dirac delta distribution $\delta(x)$ and its derivative(s) can serve as a model for many different phenomena. We describe a discontinuous Galerkin (DG) method to numerically solve such equations with source terms proportional to $\partial^n \delta /\partial x^n$. Despite the presence of singular source terms, which imply discontinuous or potentially singular solutions, our DG method achieves global spectral accuracy even at the source's location. Our DG method is developed for the wave equation written in fully first-order form. The first-order reduction is carried out using a distributional auxiliary variable that removes some of the source term's singular behavior. While this is helpful numerically, it gives rise to a distributional constraint. We show that a time-independent spurious solution can develop if the initial constraint violation is proportional to $\delta(x)$. Numerical experiments verify this behavior and our scheme's convergence properties by comparing against exact solutions.
翻译:由 Dirac delta 分布 $\ delta( x) 及其衍生物产生的线性波方程式来源于 Dirac delta 分配 $\ delta( x) 及其衍生物,可以作为许多不同现象的模型。 我们描述一种不连续的 Galerkin (DG) 方法, 以与 $\ repartn /\ delta /\ part x $ $ 美元成比例的源值来以数字方式解析这些方程式。 尽管存在单个源术语, 这意味着不连续或潜在的单一解决方案, 我们的 DG 方法甚至在源的位置上也达到了全球频谱准确性 。 我们的 DG 方法是针对以完全一阶形式写成的波方程式开发的。 第一阶次计算法是使用一个分配辅助变量来进行递解源术语某些单项行为。 虽然这在数字上很有帮助, 但也产生了一个分布限制。 我们表明, 如果初始约束违约情况与 $\ delta ( x) $ 。 。 。 numerical 实验通过比较精确的解决方案, 可以验证此行为和我们的组合的趋同特性, 。