This paper aims to simulate viscoplastic flow in a shallow-water regime. We specifically use the Bingham model in which the material behaves as a solid if the stress is below a certain threshold, otherwise, it moves as a fluid. The main difficulty of this problem is the coupling of the shallow-water equations with the viscoplastic constitutive laws and the high computational effort needed in its solution. Although there have been many studies of this problem, most of these works use explicit methods with simplified empirical models. In our work, to accommodate non-uniform grids and complicated geometries, we use the discontinuous Galerkin method to solve shallow viscoplastic flows. This method is attractive due to its high parallelization, h- and p-adaptivity, and ability to capture shocks. Additionally, we treat the discontinuities in the interfaces between elements with numerical fluxes that ensure a stable solution of the nonlinear hyperbolic equations. To couple the Bingham model with the shallow-water equations, we regularize the problem with three alternatives. Finally, in order to show the effectiveness of our approach, we perform numerical examples for the usual benchmarks of the shallow-water equations.


翻译:本文旨在模拟浅水系统中的粘贴塑料流。 我们特别使用宾汉姆模型,根据这个模型,如果压力低于某一阈值,材料将表现为固体,否则,它会作为液体流动。 这个问题的主要困难在于浅水方程式与粘结成成份法和解决问题所需的大量计算努力的结合。 尽管已经对这个问题进行了许多研究,但大多数这些工程都使用简化的经验模型的明确方法。 在我们的工作中,为了适应非统一电网和复杂的地貌,我们使用不连续的盖尔金方法来解决浅层粘贴性流。由于这种方法的高度平行化、 h 和 p 适应性以及捕捉冲击的能力,因此这种方法具有吸引力。此外,我们处理数字通量法各要素之间的不连续问题,以确保非线性超偏方程式的稳定解决。 将宾汉模型与浅水方程式结合起来,我们用三种替代方法来规范问题。 最后,为了显示我们的方法的有效性,我们为通常的浅水方程式基准,我们用数字式示例。

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Arxiv
0+阅读 · 2023年3月17日
Arxiv
0+阅读 · 2023年3月14日
VIP会员
相关资讯
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
ACM TOMM Call for Papers
CCF多媒体专委会
2+阅读 · 2022年3月23日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2010年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员