We consider the estimation of two-sample integral functionals, of the type that occur naturally, for example, when the object of interest is a divergence between unknown probability densities. Our first main result is that, in wide generality, a weighted nearest neighbour estimator is efficient, in the sense of achieving the local asymptotic minimax lower bound. Moreover, we also prove a corresponding central limit theorem, which facilitates the construction of asymptotically valid confidence intervals for the functional, having asymptotically minimal width. One interesting consequence of our results is the discovery that, for certain functionals, the worst-case performance of our estimator may improve on that of the natural `oracle' estimator, which is given access to the values of the unknown densities at the observations.
翻译:我们考虑对自然产生的两种抽样整体功能进行估计,例如,当利益对象为未知概率密度之间的差异时,我们自然会对两种抽样整体功能进行估计。我们的第一个主要结果是,从广义上讲,一个加权近邻估计仪效率很高,其含义是实现当地无症状最低约束值。此外,我们还证明了一个相应的中心限值,它有利于为功能构建无症状的有效信任间隔,其宽度微不足道。我们结果的一个有趣的后果是发现,对于某些功能而言,我们的估计仪最差的性能可能比自然“神器”估计仪的性能更好,因为自然“神器”估计仪的性能可以接触到观察时未知密度的值。