In the present work, we examine and analyze an alternative of the unfitted mesh finite element method improved by omitting computationally expensive, especially for fluids, stabilization type of penalty onto the boundary area, namely the so-called ghost penalty. This approach is based on the discontinuous Galerkin method, enriched by arbitrarily shaped boundary elements techniques. In this framework, we examine a stationary Stokes fluid system and we prove the inf/sup condition, the hp- a priori error estimates, to our knowledge for the first time in the literature, while we investigate the optimal convergence rates numerically. This approach recovers and integrates the flexibility and superiority of the unfitted methods whenever geometrical deformations are taking place, combined with the efficiency of the hp-version techniques based on arbitrarily shaped elements on the boundary.
翻译:在目前的工作中,我们研究和分析一种替代方法,即不适宜网状有限元素的方法,即所谓的幽灵惩罚,在边界地区省略计算成本昂贵的固定处罚类型,特别是液体的固定处罚类型,从而改进了不适宜网状有限元素的替代方法,即所谓的 " 幽灵惩罚 " ;这种方法基于不连续的Galerkin方法,通过任意形状的边界元素技术加以丰富;在此框架内,我们检查一个固定的Stokes流体系统,并在文献中首次证明我们所了解的情况,即hp-先验误差估计;同时我们从数字上调查最佳的趋同率;这一方法在进行几何性畸形时恢复并结合了不合适的方法的灵活性和优越性,同时结合了基于任意形状的边界要素的Hp转换技术的效率。