In this paper, we explore incremental few-shot object detection (iFSD), which incrementally learns novel classes using only a few examples without revisiting base classes. Previous iFSD works achieved the desired results by applying meta-learning. However, meta-learning approaches show insufficient performance that is difficult to apply to practical problems. In this light, we propose a simple fine-tuning-based approach, the Incremental Two-stage Fine-tuning Approach (iTFA) for iFSD, which contains three steps: 1) base training using abundant base classes with the class-agnostic box regressor, 2) separation of the RoI feature extractor and classifier into the base and novel class branches for preserving base knowledge, and 3) fine-tuning the novel branch using only a few novel class examples. We evaluate our iTFA on the real-world datasets PASCAL VOC, COCO, and LVIS. iTFA achieves competitive performance in COCO and shows a 30% higher AP accuracy than meta-learning methods in the LVIS dataset. Experimental results show the effectiveness and applicability of our proposed method.
翻译:在本文中,我们探索了渐进式的微小物体探测(iFSD),这种探测只使用几个例子,而不用重新研究基础类,就逐渐学习新类。以前的iFSD通过应用元学习取得了预期的结果。然而,元学习方法显示,在实际问题中,业绩不理想,难以适用。我们建议对iFSD采取简单的微调方法,即递增二阶段微调方法,其中包括三个步骤:(1) 基础培训,使用大量基础班,使用等级级级信箱回放器;(2) 将RoI地物提取器和分类器分离到基础和新类分支,以保存基础知识;(3) 微调新分支,仅使用几个新的类例子。我们用现实世界数据集来评估我们的iTFA,即PASCAL VOC、COCO和LVIS。 iTFA在CO取得竞争性业绩,并在LVIS数据集中显示30%的AP精确度比ME学习方法高。实验结果显示我们提议的方法的有效性和适用性。