The goal of spatial-temporal action detection is to determine the time and place where each person's action occurs in a video and classify the corresponding action category. Most of the existing methods adopt fully-supervised learning, which requires a large amount of training data, making it very difficult to achieve zero-shot learning. In this paper, we propose to utilize a pre-trained visual-language model to extract the representative image and text features, and model the relationship between these features through different interaction modules to obtain the interaction feature. In addition, we use this feature to prompt each label to obtain more appropriate text features. Finally, we calculate the similarity between the interaction feature and the text feature for each label to determine the action category. Our experiments on J-HMDB and UCF101-24 datasets demonstrate that the proposed interaction module and prompting make the visual-language features better aligned, thus achieving excellent accuracy for zero-shot spatio-temporal action detection. The code will be released upon acceptance.
翻译:空间时间动作检测的目标是确定人们动作发生的时间和地点,并分类相应的动作类别。目前大多数现有方法采用完全监督学习,需要大量的训练数据,使得实现零样本学习非常困难。本文提出利用预训练的视觉语言模型提取代表性图像和文本特征,并通过不同的交互模块对这些特征之间的关系进行建模,从而获得交互特征。此外,我们利用这种特征提示每个标签以获得更适当的文本特征。最后,我们计算交互特征和每个标签的文本特征之间的相似度来确定动作类别。我们在J-HMDB和UCF101-24数据集上的实验表明,所提出的交互模块和提示使视觉语言特征更好地对齐,从而实现了零样本时空动作检测的出色准确性。代码将在接受后发布。