In this survey, we first introduce the background of popular sensors used for self-driving, their data properties, and the corresponding object detection algorithms. Next, we discuss existing datasets that can be used for evaluating multi-modal 3D object detection algorithms. Then we present a review of multi-modal fusion based 3D detection networks, taking a close look at their fusion stage, fusion input and fusion granularity, and how these design choices evolve with time and technology. After the review, we discuss open challenges as well as possible solutions. We hope that this survey can help researchers to get familiar with the field and embark on investigations in the area of multi-modal 3D object detection.
翻译:在此调查中, 我们首先介绍用于自行驾驶的流行传感器的背景、 其数据属性和相应的物体探测算法。 接下来, 我们讨论可用于评价多式三维物体探测算法的现有数据集。 然后我们介绍基于三维物体探测算法的多式聚变网络的回顾, 仔细观察它们的聚变阶段、 聚变输入和聚变颗粒度, 以及这些设计选择如何随着时间和技术的演变。 在审查之后, 我们讨论公开的挑战以及可能的解决办法。 我们希望这项调查能够帮助研究人员熟悉现场, 并在多式三维物体探测领域开始调查 。</s>