Prediction of multi-dimensional labels plays an important role in machine learning problems. We found that the classical binary labels could not reflect the contents and their relationships in an instance. Hence, we propose a multi-label classification model based on interval type-2 fuzzy logic. In the proposed model, we use a deep neural network to predict the type-1 fuzzy membership of an instance and another one to predict the fuzzifiers of the membership to generate interval type-2 fuzzy memberships. We also propose a loss function to measure the similarities between binary labels in datasets and interval type-2 fuzzy memberships generated by our model. The experiments validate that our approach outperforms baselines on multi-label classification benchmarks.
翻译:对多维标签的预测在机器学习问题中起着重要作用。 我们发现古典二进制标签无法在实例中反映内容及其关系。 因此, 我们提议了一个基于间距2型模糊逻辑的多标签分类模型。 在拟议模型中, 我们使用深神经网络来预测一个实例的1型模糊成分, 而另一个则用来预测成员中的模糊成分, 以生成间距2型模糊成分。 我们还提议了一个损失函数来测量数据集中的二进制标签和我们模型生成的间距2型模糊属性之间的相似性。 实验证实我们的方法超过了多标签分类基准的基线。