Graph-based semi-supervised learning (SSL) is an important learning problem where the goal is to assign labels to initially unlabeled nodes in a graph. Graph Convolutional Networks (GCNs) have recently been shown to be effective for graph-based SSL problems. GCNs inherently assume existence of pairwise relationships in the graph-structured data. However, in many real-world problems, relationships go beyond pairwise connections and hence are more complex. Hypergraphs provide a natural modeling tool to capture such complex relationships. In this work, we explore the use of GCNs for hypergraph-based SSL. In particular, we propose HyperGCN, an SSL method which uses a layer-wise propagation rule for convolutional neural networks operating directly on hypergraphs. To the best of our knowledge, this is the first principled adaptation of GCNs to hypergraphs. HyperGCN is able to encode both the hypergraph structure and hypernode features in an effective manner. Through detailed experimentation, we demonstrate HyperGCN's effectiveness at hypergraph-based SSL.

11
下载
关闭预览

相关内容

Graph representation learning for hypergraphs can be used to extract patterns among higher-order interactions that are critically important in many real world problems. Current approaches designed for hypergraphs, however, are unable to handle different types of hypergraphs and are typically not generic for various learning tasks. Indeed, models that can predict variable-sized heterogeneous hyperedges have not been available. Here we develop a new self-attention based graph neural network called Hyper-SAGNN applicable to homogeneous and heterogeneous hypergraphs with variable hyperedge sizes. We perform extensive evaluations on multiple datasets, including four benchmark network datasets and two single-cell Hi-C datasets in genomics. We demonstrate that Hyper-SAGNN significantly outperforms the state-of-the-art methods on traditional tasks while also achieving great performance on a new task called outsider identification. Hyper-SAGNN will be useful for graph representation learning to uncover complex higher-order interactions in different applications.

0
12
下载
预览

The graph convolution network (GCN) is a widely-used facility to realize graph-based semi-supervised learning, which usually integrates node features and graph topologic information to build learning models. However, as for multi-label learning tasks, the supervision part of GCN simply minimizes the cross-entropy loss between the last layer outputs and the ground-truth label distribution, which tends to lose some useful information such as label correlations, so that prevents from obtaining high performance. In this paper, we pro-pose a novel GCN-based semi-supervised learning approach for multi-label classification, namely ML-GCN. ML-GCN first uses a GCN to embed the node features and graph topologic information. Then, it randomly generates a label matrix, where each row (i.e., label vector) represents a kind of labels. The dimension of the label vector is the same as that of the node vector before the last convolution operation of GCN. That is, all labels and nodes are embedded in a uniform vector space. Finally, during the ML-GCN model training, label vectors and node vectors are concatenated to serve as the inputs of the relaxed skip-gram model to detect the node-label correlation as well as the label-label correlation. Experimental results on several graph classification datasets show that the proposed ML-GCN outperforms four state-of-the-art methods.

0
5
下载
预览

In many real-world network datasets such as co-authorship, co-citation, email communication, etc., relationships are complex and go beyond pairwise. Hypergraphs provide a flexible and natural modeling tool to model such complex relationships. The obvious existence of such complex relationships in many real-world networks naturaly motivates the problem of learning with hypergraphs. A popular learning paradigm is hypergraph-based semi-supervised learning (SSL) where the goal is to assign labels to initially unlabeled vertices in a hypergraph. Motivated by the fact that a graph convolutional network (GCN) has been effective for graph-based SSL, we propose HyperGCN, a novel GCN for SSL on attributed hypergraphs. Additionally, we show how HyperGCN can be used as a learning-based approach for combinatorial optimisation on NP-hard hypergraph problems. We demonstrate HyperGCN's effectiveness through detailed experimentation on real-world hypergraphs.

0
9
下载
预览

Graph convolutional network (GCN) has been successfully applied to many graph-based applications; however, training a large-scale GCN remains challenging. Current SGD-based algorithms suffer from either a high computational cost that exponentially grows with number of GCN layers, or a large space requirement for keeping the entire graph and the embedding of each node in memory. In this paper, we propose Cluster-GCN, a novel GCN algorithm that is suitable for SGD-based training by exploiting the graph clustering structure. Cluster-GCN works as the following: at each step, it samples a block of nodes that associate with a dense subgraph identified by a graph clustering algorithm, and restricts the neighborhood search within this subgraph. This simple but effective strategy leads to significantly improved memory and computational efficiency while being able to achieve comparable test accuracy with previous algorithms. To test the scalability of our algorithm, we create a new Amazon2M data with 2 million nodes and 61 million edges which is more than 5 times larger than the previous largest publicly available dataset (Reddit). For training a 3-layer GCN on this data, Cluster-GCN is faster than the previous state-of-the-art VR-GCN (1523 seconds vs 1961 seconds) and using much less memory (2.2GB vs 11.2GB). Furthermore, for training 4 layer GCN on this data, our algorithm can finish in around 36 minutes while all the existing GCN training algorithms fail to train due to the out-of-memory issue. Furthermore, Cluster-GCN allows us to train much deeper GCN without much time and memory overhead, which leads to improved prediction accuracy---using a 5-layer Cluster-GCN, we achieve state-of-the-art test F1 score 99.36 on the PPI dataset, while the previous best result was 98.71 by [16].

0
6
下载
预览

Graph convolutional networks (GCNs) have recently become one of the most powerful tools for graph analytics tasks in numerous applications, ranging from social networks and natural language processing to bioinformatics and chemoinformatics, thanks to their ability to capture the complex relationships between concepts. At present, the vast majority of GCNs use a neighborhood aggregation framework to learn a continuous and compact vector, then performing a pooling operation to generalize graph embedding for the classification task. These approaches have two disadvantages in the graph classification task: (1)when only the largest sub-graph structure ($k$-hop neighbor) is used for neighborhood aggregation, a large amount of early-stage information is lost during the graph convolution step; (2) simple average/sum pooling or max pooling utilized, which loses the characteristics of each node and the topology between nodes. In this paper, we propose a novel framework called, dual attention graph convolutional networks (DAGCN) to address these problems. DAGCN automatically learns the importance of neighbors at different hops using a novel attention graph convolution layer, and then employs a second attention component, a self-attention pooling layer, to generalize the graph representation from the various aspects of a matrix graph embedding. The dual attention network is trained in an end-to-end manner for the graph classification task. We compare our model with state-of-the-art graph kernels and other deep learning methods. The experimental results show that our framework not only outperforms other baselines but also achieves a better rate of convergence.

0
14
下载
预览

Graph convolutional networks (GCNs) have been successfully applied in node classification tasks of network mining. However, most of these models based on neighborhood aggregation are usually shallow and lack the "graph pooling" mechanism, which prevents the model from obtaining adequate global information. In order to increase the receptive field, we propose a novel deep Hierarchical Graph Convolutional Network (H-GCN) for semi-supervised node classification. H-GCN first repeatedly aggregates structurally similar nodes to hyper-nodes and then refines the coarsened graph to the original to restore the representation for each node. Instead of merely aggregating one- or two-hop neighborhood information, the proposed coarsening procedure enlarges the receptive field for each node, hence more global information can be learned. Comprehensive experiments conducted on public datasets demonstrate the effectiveness of the proposed method over the state-of-art methods. Notably, our model gains substantial improvements when only a few labeled samples are provided.

0
13
下载
预览

Predicting properties of nodes in a graph is an important problem with applications in a variety of domains. Graph-based Semi-Supervised Learning (SSL) methods aim to address this problem by labeling a small subset of the nodes as seeds and then utilizing the graph structure to predict label scores for the rest of the nodes in the graph. Recently, Graph Convolutional Networks (GCNs) have achieved impressive performance on the graph-based SSL task. In addition to label scores, it is also desirable to have confidence scores associated with them. Unfortunately, confidence estimation in the context of GCN has not been previously explored. We fill this important gap in this paper and propose ConfGCN, which estimates labels scores along with their confidences jointly in GCN-based setting. ConfGCN uses these estimated confidences to determine the influence of one node on another during neighborhood aggregation, thereby acquiring anisotropic capabilities. Through extensive analysis and experiments on standard benchmarks, we find that ConfGCN is able to outperform state-of-the-art baselines. We have made ConfGCN's source code available to encourage reproducible research.

0
5
下载
预览

Graphs, which describe pairwise relations between objects, are essential representations of many real-world data such as social networks. In recent years, graph neural networks, which extend the neural network models to graph data, have attracted increasing attention. Graph neural networks have been applied to advance many different graph related tasks such as reasoning dynamics of the physical system, graph classification, and node classification. Most of the existing graph neural network models have been designed for static graphs, while many real-world graphs are inherently dynamic. For example, social networks are naturally evolving as new users joining and new relations being created. Current graph neural network models cannot utilize the dynamic information in dynamic graphs. However, the dynamic information has been proven to enhance the performance of many graph analytical tasks such as community detection and link prediction. Hence, it is necessary to design dedicated graph neural networks for dynamic graphs. In this paper, we propose DGNN, a new {\bf D}ynamic {\bf G}raph {\bf N}eural {\bf N}etwork model, which can model the dynamic information as the graph evolving. In particular, the proposed framework can keep updating node information by capturing the sequential information of edges, the time intervals between edges and information propagation coherently. Experimental results on various dynamic graphs demonstrate the effectiveness of the proposed framework.

0
15
下载
预览

Text Classification is an important and classical problem in natural language processing. There have been a number of studies that applied convolutional neural networks (convolution on regular grid, e.g., sequence) to classification. However, only a limited number of studies have explored the more flexible graph convolutional neural networks (convolution on non-grid, e.g., arbitrary graph) for the task. In this work, we propose to use graph convolutional networks for text classification. We build a single text graph for a corpus based on word co-occurrence and document word relations, then learn a Text Graph Convolutional Network (Text GCN) for the corpus. Our Text GCN is initialized with one-hot representation for word and document, it then jointly learns the embeddings for both words and documents, as supervised by the known class labels for documents. Our experimental results on multiple benchmark datasets demonstrate that a vanilla Text GCN without any external word embeddings or knowledge outperforms state-of-the-art methods for text classification. On the other hand, Text GCN also learns predictive word and document embeddings. In addition, experimental results show that the improvement of Text GCN over state-of-the-art comparison methods become more prominent as we lower the percentage of training data, suggesting the robustness of Text GCN to less training data in text classification.

0
11
下载
预览

Graph Convolutional Neural Networks (Graph CNNs) are generalizations of classical CNNs to handle graph data such as molecular data, point could and social networks. Current filters in graph CNNs are built for fixed and shared graph structure. However, for most real data, the graph structures varies in both size and connectivity. The paper proposes a generalized and flexible graph CNN taking data of arbitrary graph structure as input. In that way a task-driven adaptive graph is learned for each graph data while training. To efficiently learn the graph, a distance metric learning is proposed. Extensive experiments on nine graph-structured datasets have demonstrated the superior performance improvement on both convergence speed and predictive accuracy.

0
5
下载
预览
小贴士
相关论文
Hyper-SAGNN: a self-attention based graph neural network for hypergraphs
Ruochi Zhang,Yuesong Zou,Jian Ma
12+阅读 · 2019年11月6日
Semi-Supervised Graph Embedding for Multi-Label Graph Node Classification
Kaisheng Gao,Jing Zhang,Cangqi Zhou
5+阅读 · 2019年7月12日
HyperGCN: A New Method of Training Graph Convolutional Networks on Hypergraphs
Naganand Yadati,Madhav Nimishakavi,Prateek Yadav,Vikram Nitin,Anand Louis,Partha Talukdar
9+阅读 · 2019年5月22日
Wei-Lin Chiang,Xuanqing Liu,Si Si,Yang Li,Samy Bengio,Cho-Jui Hsieh
6+阅读 · 2019年5月20日
Fengwen Chen,Shirui Pan,Jing Jiang,Huan Huo,Guodong Long
14+阅读 · 2019年4月4日
Fenyu Hu,Yanqiao Zhu,Shu Wu,Liang Wang,Tieniu Tan
13+阅读 · 2019年3月5日
Confidence-based Graph Convolutional Networks for Semi-Supervised Learning
Shikhar Vashishth,Prateek Yadav,Manik Bhandari,Partha Talukdar
5+阅读 · 2019年2月12日
Yao Ma,Ziyi Guo,Zhaochun Ren,Eric Zhao,Jiliang Tang,Dawei Yin
15+阅读 · 2018年10月24日
Liang Yao,Chengsheng Mao,Yuan Luo
11+阅读 · 2018年10月17日
Ruoyu Li,Sheng Wang,Feiyun Zhu,Junzhou Huang
5+阅读 · 2018年1月10日
相关VIP内容
【ICML2020】持续图神经网络,Continuous Graph Neural Networks
专知会员服务
105+阅读 · 2020年6月28日
专知会员服务
115+阅读 · 2020年5月26日
相关资讯
一文读懂图卷积GCN
计算机视觉life
17+阅读 · 2019年12月21日
Transferring Knowledge across Learning Processes
CreateAMind
8+阅读 · 2019年5月18日
无监督元学习表示学习
CreateAMind
22+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
32+阅读 · 2019年1月3日
【论文】变分推断(Variational inference)的总结
机器学习研究会
24+阅读 · 2017年11月16日
Adversarial Variational Bayes: Unifying VAE and GAN 代码
CreateAMind
7+阅读 · 2017年10月4日
【推荐】全卷积语义分割综述
机器学习研究会
17+阅读 · 2017年8月31日
Auto-Encoding GAN
CreateAMind
5+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员