项目名称: M-矩阵(张量)最小特征值估计及其相关问题研究
项目编号: No.11501141
项目类型: 青年科学基金项目
立项/批准年度: 2016
项目学科: 数理科学和化学
项目作者: 赵建兴
作者单位: 贵州民族大学
项目金额: 18万元
中文摘要: 本项目拟应用理论研究与数值实验相结合的方法,研究M-矩阵(张量)最小特征值的估计及其相关问题。首先对M-矩阵与其逆矩阵的Hadamard product的最小特征值和M-矩阵逆的无穷大范数进行研究,以期利用矩阵元素构造收敛的迭代序列去逼近它们,并进行误差分析、收敛速度分析等;其次对一般张量A的幂的H-特征值与张量A的H-特征值之间的联系进行深入系统研究,并在此基础上,研究M-张量的最小特征值的估计问题,以期得到尽可能精确的估计值。最后应用这些性质和算法研究高阶偶次齐次多元多项式正定性的判定问题,以期得到偶次齐次多元多项式正定性的一些新的适用判定算法。
中文关键词: Hadamard;product;无穷范数;特征值;张量;多元多项式
英文摘要: Estimation for the minimum eigenvalue of M-matrices (tensors) and its related problems will be researched by using the method of combining theoretical study with the numerical simulation. Firstly, we will systematically study the minimum eigenvalue of the Hadamard product of an M-matrix and its inverse, and the infinity norms of M-matrices by using convergent sequences to approximate to their true value, and do error analysis, the rate of convergence analysis. Secondly, the relationships of the H-eigenvalue between general tensor and its power will be systematically studied. And on this basis, the estimation of the minimum eigenvalue of M-tensor will be studied in order to get as accurate as possible estimation. Finally, these properties and algorithms will be applied to identify the positive definiteness of even order homogeneous multivariate polynomials, and expect to get some practical algorithms for testing the positive definiteness of an even order homogeneous multivariat epolynomial.
英文关键词: Hadamard product;The infinite norm;Eigenvalue;Tensor;Multivariate polynomial