This paper proposes a generic method to learn interpretable convolutional filters in a deep convolutional neural network (CNN) for object classification, where each interpretable filter encodes features of a specific object part. Our method does not require additional annotations of object parts or textures for supervision. Instead, we use the same training data as traditional CNNs. Our method automatically assigns each interpretable filter in a high conv-layer with an object part of a certain category during the learning process. Such explicit knowledge representations in conv-layers of CNN help people clarify the logic encoded in the CNN, i.e., answering what patterns the CNN extracts from an input image and uses for prediction. We have tested our method using different benchmark CNNs with various structures to demonstrate the broad applicability of our method. Experiments have shown that our interpretable filters are much more semantically meaningful than traditional filters.
翻译:本文提出一种通用方法,用于在深卷变神经网络中学习可解释的卷动过滤器,用于对象分类,其中每个可解释的过滤器都有特定对象部分的编码特性。我们的方法不需要额外的对象部件说明或纹理来进行监督。相反,我们使用与传统CNN相同的培训数据。我们的方法在学习过程中将每个可解释的过滤器自动指定在一个高孔层,其中含有某一类别的一个对象部分。这种CNN的电解层的清晰知识显示有助于人们澄清CNN编码的逻辑,即回答CNN从输入图像和预测用途中提取的规律。我们用不同的基准CNN结构测试了我们的方法,以显示我们方法的广泛适用性。实验表明,我们可解释的过滤器比传统的过滤器更具有语义意义。