Few-shot learning performs classification tasks and regression tasks on scarce samples. As one of the most representative few-shot learning models, Prototypical Network represents each class as sample average, or a prototype, and measures the similarity of samples and prototypes by Euclidean distance. In this paper, we propose a framework of spectral filtering (shrinkage) for measuring the difference between query samples and prototypes, or namely the relative prototypes, in a reproducing kernel Hilbert space (RKHS). In this framework, we further propose a method utilizing Tikhonov regularization as the filter function for few-shot classification. We conduct several experiments to verify our method utilizing different kernels based on the miniImageNet dataset, tiered-ImageNet dataset and CIFAR-FS dataset. The experimental results show that the proposed model can perform the state-of-the-art. In addition, the experimental results show that the proposed shrinkage method can boost the performance. Source code is available at https://github.com/zhangtao2022/DSFN.
翻译:少见的学习对稀有样本执行分类任务和回归任务。作为最具代表性的少见学习模型之一,Protognal Network作为样本平均或原型代表了每一类样本,并测量了Euclidean距离的样品和原型的相似性。在本文中,我们提出了一个光谱过滤框架(缩放),用于测量查询样品和原型之间的差别,或相对原型,即复制内核Hilbert空间(RKHS)中的相对原型。在这个框架内,我们进一步提议了一种方法,利用Tikhonov的正规化作为过滤功能进行微小分解分类。我们进行了几次实验,以利用基于小型IMageNet数据集、分层-ImageNet数据集和CIFAR-FS数据集的不同内核来验证我们的方法。实验结果显示,拟议的模型可以发挥最新技术的作用。此外,实验结果显示,拟议的缩放方法可以提高性。源码见https://github.com/zhangtao2022DFNFN。