This work introduces and analyzes B-spline approximation spaces defined on general geometric domains obtained through a mapping from a parameter domain. These spaces are constructed as sparse-grid tensor products of univariate spaces in the parameter domain and are mapped to the physical domain via a geometric parametrization. Both the univariate approximation spaces and the geometric mapping are built using maximally smooth B-splines. We construct two such spaces, employing either the sparse-grid combination technique or the hierarchical subspace decomposition of sparse-grid tensor products, and we prove their mathematical equivalence. Furthermore, we derive approximation error estimates and inverse inequalities that highlight the advantages of sparse-grid tensor products. Specifically, under suitable regularity assumptions on the solution, these spaces achieve the same approximation order as standard tensor product spaces while using significantly fewer degrees of freedom. Additionally, our estimates indicate that, in the case of non-tensor-product domains, stronger regularity assumptions on the solution -- particularly concerning isotropic (non-mixed) derivatives -- are required to achieve optimal convergence rates compared to sparse-grid methods defined on tensor-product domains.
翻译:本文引入并分析了一类定义在一般几何域上的B样条逼近空间,这些几何域通过参数域的映射获得。这些空间构造为参数域中一元空间的稀疏网格张量积,并通过几何参数化映射到物理域。一元逼近空间和几何映射均采用最大光滑度的B样条构建。我们构建了两个此类空间:分别采用稀疏网格组合技术或稀疏网格张量积的层次子空间分解方法,并证明了它们的数学等价性。此外,我们推导了逼近误差估计和逆不等式,凸显了稀疏网格张量积的优势。具体而言,在解满足适当正则性假设的条件下,这些空间在显著减少自由度的同时,能达到与标准张量积空间相同的逼近阶。特别地,我们的估计表明,对于非张量积几何域,相较于定义在张量积域上的稀疏网格方法,需要更强的解正则性假设——特别是关于各向同性(非混合)导数的假设——才能达到最优收敛率。