This paper presents a semantic planar SLAM system that improves pose estimation and mapping using cues from an instance planar segmentation network. While the mainstream approaches are using RGB-D sensors, employing a monocular camera with such a system still faces challenges such as robust data association and precise geometric model fitting. In the majority of existing work, geometric model estimation problems such as homography estimation and piece-wise planar reconstruction (PPR) are usually solved by standard (greedy) RANSAC separately and sequentially. However, setting the inlier-outlier threshold is difficult in absence of information about the scene (i.e. the scale). In this work, we revisit these problems and argue that two mentioned geometric models (homographies/3D planes) can be solved by minimizing an energy function that exploits the spatial coherence, i.e. with graph-cut optimization, which also tackles the practical issue when the output of a trained CNN is inaccurate. Moreover, we propose an adaptive parameter setting strategy based on our experiments, and report a comprehensive evaluation on various open-source datasets.


翻译:本文展示了使用原样平面分割网络信号改进测算和绘图的语义平面SLMM系统。 主流方法正在使用 RGB-D 传感器,但使用带有这种系统的单镜照相机仍面临稳健的数据联系和精确的几何模型设计等挑战。 在大多数现有工作中,诸如同影估计和笔记式平面重建等几何模型估计问题通常通过标准( greedy) RANSAC 分别和顺序解决。然而,在缺乏关于现场( 比例) 的信息的情况下,很难设定离线阈值。 在这项工作中,我们重新审视了这些问题,并论证提到的两个几何模型( hographies/3D plane) 可以通过最大限度减少利用空间一致性的能源功能来解决, 即用图形- 优化, 在经过培训的CNN产出不准确时, 也解决实际问题。 此外,我们提出一个适应性参数设定战略,以我们的实验为基础, 并报告对各种公开源数据集的全面评估。

0
下载
关闭预览

相关内容

专知会员服务
42+阅读 · 2021年9月15日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
109+阅读 · 2020年3月12日
专知会员服务
86+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Structure Aware SLAM using Quadrics and Planes
Arxiv
4+阅读 · 2018年8月13日
VIP会员
相关VIP内容
专知会员服务
42+阅读 · 2021年9月15日
专知会员服务
31+阅读 · 2021年6月12日
专知会员服务
109+阅读 · 2020年3月12日
专知会员服务
86+阅读 · 2019年12月13日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
相关资讯
ICRA 2019 论文速览 | 基于Deep Learning 的SLAM
计算机视觉life
41+阅读 · 2019年7月22日
【泡泡汇总】CVPR2019 SLAM Paperlist
泡泡机器人SLAM
14+阅读 · 2019年6月12日
【泡泡一分钟】高动态环境的语义单目SLAM
泡泡机器人SLAM
5+阅读 · 2019年3月27日
【泡泡一分钟】用于评估视觉惯性里程计的TUM VI数据集
泡泡机器人SLAM
11+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
【泡泡一分钟】CVI-SLAM –协同视觉惯性SLAM
泡泡机器人SLAM
21+阅读 · 2018年12月18日
【泡泡一分钟】用于平面环境的线性RGBD-SLAM
泡泡机器人SLAM
6+阅读 · 2018年12月18日
Top
微信扫码咨询专知VIP会员