We present a decentralized minimum-time trajectory optimization scheme based on learning model predictive control for multi-agent systems with nonlinear decoupled dynamics and coupled state constraints. By performing the same task iteratively, data from previous task executions is used to construct and improve local time-varying safe sets and an approximate value function. These are used in a decoupled MPC problem as terminal sets and terminal cost functions. Our framework results in a decentralized controller, which requires no communication between agents over each iteration of task execution, and guarantees persistent feasibility, finite-time closed-loop convergence, and non-decreasing performance of the global system over task iterations. Numerical experiments of a multi-vehicle collision avoidance scenario demonstrate the effectiveness of the proposed scheme.
翻译:我们根据学习模型对具有非线性分解动态和并存状态制约的多试剂系统进行预测控制,提出了一个分散的最小时间轨迹优化计划;通过迭接执行同一任务,从以往任务执行中得出的数据被用于建造和改进当地时间分配的安全套件和大致价值功能;这些数据被用于一个脱钩的多功能计算器问题,作为终端装置和终端成本功能;我们的框架导致一个分散控制器,它要求各代理器之间对任务执行的每一次迭代不进行沟通,并保证全球系统在任务迭代方面的持久性可行性、有限时间封闭式连接以及非决定性性工作表现;多车辆避免碰撞设想的量化实验显示了拟议计划的有效性。