In this paper we provide provable regret guarantees for an online meta-learning receding horizon control algorithm in an iterative control setting, where in each iteration the system to be controlled is a linear deterministic system that is different and unknown, the cost for the controller in an iteration is a general additive cost function and the control input is required to be constrained, which if violated incurs an additional cost. We prove (i) that the algorithm achieves a regret for the controller cost and constraint violation that are $\tilde{O}(T^{3/4})$ for an episode of duration $T$ with respect to the best policy that satisfies the control input control constraints and (ii) that the average of the regret for the controller cost and constraint violation with respect to the same policy vary as $\tilde{O}((1+1/\sqrt{N})T^{3/4})$ with the number of iterations $N$, showing that the worst regret for the learning within an iteration continuously improves with experience of more iterations.


翻译:在本文中,我们为在迭代控制环境中的在线元学习后退率地平线控制算法提供了可证实的遗憾保证,在迭代控制环境中,所要控制的系统是一个不同和未知的线性确定系统,迭代控制器的费用是一个一般的添加成本功能,控制输入必须受到限制,如果被违反,将产生额外的费用。我们证明:(一) 该算法对控制器的费用和限制违反情况感到遗憾,这种违反为$\tilde{O}(T ⁇ 3/4}),在满足控制输入控制限制限制的最佳政策方面,持续时间为$T(美元),并且(二) 控制器费用和限制违反政策的平均遗憾程度与$tilde{O}((1+1/\ sqrt{N}T ⁇ 3/4}美元不同,其迭代数是1+1/\\\\sqrt{N})美元,表明在循环中学习最糟糕的遗憾随着更多迭代经验不断改善。

0
下载
关闭预览

相关内容

专知会员服务
51+阅读 · 2020年12月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
7+阅读 · 2020年10月9日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
5+阅读 · 2018年4月22日
VIP会员
相关VIP内容
专知会员服务
51+阅读 · 2020年12月14日
元学习(meta learning) 最新进展综述论文
专知会员服务
279+阅读 · 2020年5月8日
深度强化学习策略梯度教程,53页ppt
专知会员服务
182+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
177+阅读 · 2019年10月11日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
无监督元学习表示学习
CreateAMind
27+阅读 · 2019年1月4日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】GAN架构入门综述(资源汇总)
机器学习研究会
10+阅读 · 2017年9月3日
【学习】Hierarchical Softmax
机器学习研究会
4+阅读 · 2017年8月6日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
相关论文
Arxiv
7+阅读 · 2020年10月9日
Residual Policy Learning
Arxiv
4+阅读 · 2018年12月15日
Arxiv
6+阅读 · 2018年12月10日
Arxiv
5+阅读 · 2018年4月22日
Top
微信扫码咨询专知VIP会员