[Zhang, ICML 2018] provided the first decentralized actor-critic algorithm for multi-agent reinforcement learning (MARL) that offers convergence guarantees. In that work, policies are stochastic and are defined on finite action spaces. We extend those results to offer a provably-convergent decentralized actor-critic algorithm for learning deterministic policies on continuous action spaces. Deterministic policies are important in real-world settings. To handle the lack of exploration inherent in deterministic policies, we consider both off-policy and on-policy settings. We provide the expression of a local deterministic policy gradient, decentralized deterministic actor-critic algorithms and convergence guarantees for linearly-approximated value functions. This work will help enable decentralized MARL in high-dimensional action spaces and pave the way for more widespread use of MARL.


翻译:[张,ICML 2018] 提供了第一个为多试剂强化学习提供融合保障的分散化的行为者-批评算法(MARL),在这项工作中,政策是随机的,是在有限的行动空间上界定的。我们扩大这些结果,为学习关于持续行动空间的确定性政策提供了一种可辨别的分散化的行为者-批评算法。在现实世界环境中,确定性政策很重要。为了处理确定性政策所固有的缺乏探索的问题,我们既考虑政策外的,也考虑政策上的设置。我们为线性近值功能提供了一种地方确定性政策梯度、分散化的确定性行为者-批评算法和趋同保证的表达方式。这项工作将有助于使分散化的MARL能够在高维行动空间进行,并为更广泛地使用MARL铺平道路。

0
下载
关闭预览

相关内容

剑桥大学《数据科学: 原理与实践》课程,附PPT下载
专知会员服务
49+阅读 · 2021年1月20日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
深度强化学习策略梯度教程,53页ppt
专知会员服务
178+阅读 · 2020年2月1日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
58+阅读 · 2019年10月17日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
MIT新书《强化学习与最优控制》
专知会员服务
275+阅读 · 2019年10月9日
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
已删除
将门创投
4+阅读 · 2017年11月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Arxiv
18+阅读 · 2021年3月16日
Logically-Constrained Reinforcement Learning
Arxiv
3+阅读 · 2018年12月6日
Arxiv
5+阅读 · 2018年6月12日
Arxiv
6+阅读 · 2018年4月24日
VIP会员
相关VIP内容
相关资讯
强化学习扫盲贴:从Q-learning到DQN
夕小瑶的卖萌屋
52+阅读 · 2019年10月13日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
meta learning 17年:MAML SNAIL
CreateAMind
11+阅读 · 2019年1月2日
OpenAI丨深度强化学习关键论文列表
中国人工智能学会
17+阅读 · 2018年11月10日
【OpenAI】深度强化学习关键论文列表
专知
11+阅读 · 2018年11月10日
已删除
将门创投
4+阅读 · 2017年11月1日
强化学习族谱
CreateAMind
26+阅读 · 2017年8月2日
强化学习 cartpole_a3c
CreateAMind
9+阅读 · 2017年7月21日
Top
微信扫码咨询专知VIP会员