We consider the construction of neural network architectures for data on simplicial complexes. In studying maps on the chain complex of a simplicial complex, we define three desirable properties of a simplicial neural network architecture: namely, permutation equivariance, orientation equivariance, and simplicial awareness. The first two properties respectively account for the fact that the node indexing and the simplex orientations in a simplicial complex are arbitrary. The last property encodes the desirable feature that the output of the neural network depends on the entire simplicial complex and not on a subset of its dimensions. Based on these properties, we propose a simple convolutional architecture, rooted in tools from algebraic topology, for the problem of trajectory prediction, and show that it obeys all three of these properties when an odd, nonlinear activation function is used. We then demonstrate the effectiveness of this architecture in extrapolating trajectories on synthetic and real datasets, with particular emphasis on the gains in generalizability to unseen trajectories.
翻译:我们考虑建造神经网络结构,以获得关于简化复合物的数据。在研究一个简化复合物的链状综合体的地图时,我们界定了一个简化神经网络结构的三种可取特性:即变形等同、定向等同和简化意识。前两种特性分别说明一个简化复合物的节点索引和简单方向是任意的。最后一种特性编码了神经网络产出取决于整个简化复合物而不是其某一维度的可取特性。基于这些特性,我们提出了一个简单的演进结构,植根于代数表层学的工具,用于轨迹预测问题,并表明在使用一个奇异的非线性激活功能时,它符合所有这些特性。然后,我们展示了这一结构在合成和真实数据集上对轨迹进行外推时的有效性,特别侧重于对可被视的轨迹的一般增益。