We treat the problem of the Frobenius distance evaluation from a given matrix $ A \in \mathbb R^{n\times n} $ with distinct eigenvalues to the manifold of matrices with multiple eigenvalues. On restricting considerations to the rank $ 1 $ real perturbation matrices, we prove that the distance in question equals $ \sqrt{z_{\ast}} $ where $ z_{\ast} $ is a positive (generically, the least positive) zero of the algebraic equation $$ \mathcal F(z) = 0, \ \mbox{where} \ \mathcal F(z):= \mathcal D_{\lambda} \left( \det \left[ (\lambda I - A)(\lambda I - A^{\top})-z I_n \right] \right)/z^n $$ and $ \mathcal D_{\lambda} $ stands for the discriminant of the polynomial treated with respect to $\lambda $. In the framework of this approach we also provide the procedure for finding the nearest to $ A $ matrix with multiple eigenvalue. Generalization of the problem to the case of complex perturbations is also discussed. Several examples are presented clarifying the computational aspects of the approach.


翻译:我们处理Frobenius距离评估问题,从一个给定的基质 $ A 的 A 美元, 以 mathbbrb R<unk> n\ time n} 美元 处理Frobenius 距离评估问题。 关于将考虑限制在 1 美元 的等级上, 真正的扰动矩阵, 我们证明, 有关距离等于 $ z<unk> ast} 美元, 其中 美元是 美元 的正( 最不正的) 方程 $ 美元 = 0, \\ mbox{ } 美元 =\ mathcal F( ) 美元 的 不同的 美元值 :\ mathcal F( z): = mathcal D<unk> lambda} =\ mathal F( z): = mathcal F( z) 的 数列 :\ mathcal lab leg le[ ibda]\ left ( left laft (= lambdal- i) Iral- pro- pro- promax- promal- promal- promal-</s>

0
下载
关闭预览

相关内容

Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年5月4日
Arxiv
0+阅读 · 2023年5月2日
Arxiv
0+阅读 · 2023年5月2日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【推荐】用Python/OpenCV实现增强现实
机器学习研究会
15+阅读 · 2017年11月16日
【推荐】用Tensorflow理解LSTM
机器学习研究会
36+阅读 · 2017年9月11日
【推荐】RNN/LSTM时序预测
机器学习研究会
25+阅读 · 2017年9月8日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员