We treat the problem of the Frobenius distance evaluation from a given matrix $ A \in \mathbb R^{n\times n} $ with distinct eigenvalues to the manifold of matrices with multiple eigenvalues. On restricting considerations to the rank $ 1 $ real perturbation matrices, we prove that the distance in question equals $ \sqrt{z_{\ast}} $ where $ z_{\ast} $ is a positive (generically, the least positive) zero of the algebraic equation $$ \mathcal F(z) = 0, \ \mbox{where} \ \mathcal F(z):= \mathcal D_{\lambda} \left( \det \left[ (\lambda I - A)(\lambda I - A^{\top})-z I_n \right] \right)/z^n $$ and $ \mathcal D_{\lambda} $ stands for the discriminant of the polynomial treated with respect to $\lambda $. In the framework of this approach we also provide the procedure for finding the nearest to $ A $ matrix with multiple eigenvalue. Generalization of the problem to the case of complex perturbations is also discussed. Several examples are presented clarifying the computational aspects of the approach.
翻译:我们处理Frobenius距离评估问题,从一个给定的基质 $ A 的 A 美元, 以 mathbbrb R<unk> n\ time n} 美元 处理Frobenius 距离评估问题。 关于将考虑限制在 1 美元 的等级上, 真正的扰动矩阵, 我们证明, 有关距离等于 $ z<unk> ast} 美元, 其中 美元是 美元 的正( 最不正的) 方程 $ 美元 = 0, \\ mbox{ } 美元 =\ mathcal F( ) 美元 的 不同的 美元值 :\ mathcal F( z): = mathcal D<unk> lambda} =\ mathal F( z): = mathcal F( z) 的 数列 :\ mathcal lab leg le[ ibda]\ left ( left laft (= lambdal- i) Iral- pro- pro- promax- promal- promal- promal-</s>