This paper proposes a learning-based visual peg-in-hole that enables training with several shapes in simulation, and adapting to arbitrary unseen shapes in real world with minimal sim-to-real cost. The core idea is to decouple the generalization of the sensory-motor policy to the design of a fast-adaptable perception module and a simulated generic policy module. The framework consists of a segmentation network (SN), a virtual sensor network (VSN), and a controller network (CN). Concretely, the VSN is trained to measure the pose of the unseen shape from a segmented image. After that, given the shape-agnostic pose measurement, the CN is trained to achieve generic peg-in-hole. Finally, when applying to real unseen holes, we only have to fine-tune the SN required by the simulated VSN+CN. To further minimize the transfer cost, we propose to automatically collect and annotate the data for the SN after one-minute human teaching. Simulated and real-world results are presented under the configurations of eye-to/in-hand. An electric vehicle charging system with the proposed policy inside achieves a 10/10 success rate in 2-3s, using only hundreds of auto-labeled samples for the SN transfer.
翻译:本文提出一个基于学习的视觉嵌入孔,使培训能够在模拟中以几种形状进行,并适应现实世界中任意的不可见形状,同时提供最低的模拟成本。核心思想是将感官运动政策的一般化与快速可适应感知模块和模拟通用政策模块的设计脱钩。框架包括一个分区网络(SN)、一个虚拟感应网络(VSN)和一个控制网络(CN)。具体地说,VSN受过培训,以便从一个片段图像中测量看不见形状的形状。此后,鉴于形状感知形状形状的形状测量,CN受过培训,以达到通用的孔内嵌。最后,当应用到真正的不可见洞时,我们只需微调模拟VSN+CN所要求的SN。为了进一步降低传输成本,我们提议在人类教学一分钟后自动收集和注解SNN的数据。模拟和实际世界结果是在一个眼对视/手图的配置下展示的。此后,氯化萘经过培训后,将实现通用的隐形图象。最后,当应用真正的无形洞洞洞测时,我们只需要对模拟车辆进行100个标式的升级系统,才能在内部成功。